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About

Notes for applied combinatorics, intended to supplement the book Applied Combinatorics by
Keller and Trotter

Contains:

• An alternate proof of the Inclusion/Exclusion formula and a fully worked out proof of
the Euler Totient formula

• Notes on the structure of permutations (cycles, inversions, signs)
• Notes on generating functions formalized through regular languages
• Notes on finite state automata and their connection to regular languages and generating

functions

This work © 2024 by Sera Gunn is licensed under CC BY-SA 4.0
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1 Preface

These notes were developed to accompany MTH 337: Applied Combinatorics during the Spring
semester of 2024. They are meant to be used interspersed with the material from Keller and
Trotter’s book Applied Combinatorics. Both these notes and Keller and Trotter’s book are
intended to have a heavy algorithmic and applied focus.

A sample sylabus is (KT is Keller and Trotter’s book)

1. KT-2: Strings, Sets, and Binomial Coefficients
2. KT-3: Induction
3. KT-4.1: Pidgeonhole

• Can cover the rest of KT-4 if students haven’t seen “big-O” in their other courses
yet

4. KT-5: Graph Theory
5. KT-7 and Inclusion-Exclusion from these notes for supplementary proofs
6. Permutations from these notes
7. KT-12, 13, 14 on graph algorithms (Prim/Kruskal, Dijkstra, Ford-Fulkerson/Edmonds-

Karp)
8. Generating Functions from these notes (instead of KT-8)
9. Regular Languages from these notes

Here is a rough overview of how these notes tie into the Keller/Trotter book.
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Inclusion/Exclusion makes a very brief appearance Note 2 but is otherwise separate in these
notes.
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Part I

Inclusion-Exclusion
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2 Inclusion/Exclusion

2.1 For two sets

Example 2.1. Suppose there are 100 CS students an a school. Of these, 50 know Java and 60
know Python (everyone knows at least one of these two languages). If we add 50 + 60 we get
the 100 total students plus 10 students who know both.

50 + 60 = 100 + 10.

Given two sets A and B, we can compute |A ∪B| by first adding everything in A and adding
everything in B. This counts all of A∪B except the items in A∩B were counted twice. Thus

|A|+ |B| = |A ∪B|+ |A ∩B|.

2.2 For three sets

Figure 2.1: Inclusion/Exclusion for 3 sets
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We can do a similar process for three sets. Start by adding up |A|+ |B|+ |C| then subtract all
the intersections of pairs then add back in |A ∩B ∩ C|. For items in each region of the Venn
diagram, think about how many times an item is added/subtracted overall.

E.g. items in A and B but not C will be added in twice in the first step (|A| + |B|) and
subtracted once in the second step (|A ∩B|) so they are counted once.

Items in A ∩B ∩ C are added in 3− 3 + 1 = 1 times.

2.3 Binomial coefficients and I/E

Suppose we are looking at a union of n sets: A1 ∪ · · · ∪An. Consider an element x belonging
exactly to A1, . . . , Am and no other sets. If we do the same procedure of adding |A1|+ · · ·+ |An|
then we are counting x a total of m times. Then, when we subtract all the pairwise intersections,
|Ai ∩Aj |, we are subtracting from the count of x a total of

(m
2
)

because there are
(m

2
)

ways to
choose two indices {i, j} ⊂ {1, . . . ,m}.

Thus, if we alternate: adding in single sets, subtracting pairs of intersections, adding triples,
subtracting quadruples, etc. we are counting x a total of

(
m

1

)
−
(
m

2

)
+
(
m

3

)
−
(
m

4

)
+ · · · (2.1)

times.

Let’s have a closer look at this. We know the Binomial Theorem says that

(1 + x)m =
(
m

0

)
x0 +

(
m

1

)
x1 +

(
m

2

)
x2 + · · ·+

(
m

m

)
xm.

Substituting x = −1, we get

0 =
(
m

0

)
−
(
m

1

)
+
(
m

2

)
− · · ·+

(
m

m

)
(−1)m.

And since
(m

0
)

= 1, if we move all the other terms to the other side of the equation, we see that
Equation 2.1 evaluates to 1.

ñ Note 1

For this problem we are counting the size of A1 ∪ · · · ∪An so each element is in at least
one set (m ≥ 1). This is important so that we can say that 0m = 0. In the context of
the binomial theorem, (1− 1)0 =

(0
0
)

= 1. This will be important later when we want to
count elements not belonging to any set.
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The general I/E formula is then

|A1 ∪ · · · ∪An| =
∑

i

|Ai| −
∑
i<j

|Ai ∩Aj |+
∑

i<j<k

|Ai ∩Aj ∩Ak| − . . .

=
n∑

t=1
(−1)t+1 ∑

i1<···<it

|Ai1 ∩ · · · ∩Ait |.

Note: (−1)t+1 takes the values 1,−1, 1,−1, . . . starting at t = 1.

2.4 Avoiding properties

Inclusion/Exclusion appears most frequently in combinatorics not as a means to count |A1 ∪
· · · ∪An| directly but rather as a means to count everything not in A1 ∪ · · · ∪An.

For example, let $[m] = {1,. . . ,m} and suppose we want to count the number of functions
f : [m] → [n] which don’t miss anything in the codomain. I.e. if Ai is the set of functions
where f(x) never equals i, then we want to count every function not in any set Ai.

Let X be the total set of functions. Then to count the functions avoiding A1∪ · · · ∪An we do

|X \ (A1 ∪ . . . An)| = |X| − |A1 ∪ . . . An|

= |X| −
∑

i

|Ai|+
∑
i<j

|Ai ∩Aj | − · · ·

\ Caution

The formula |A \B| = |A| − |B| works only when B is contained entirely inside A.

2.5 Simplifying notation.

Let P = {P1, . . . , Pn} be a collection of sets representing negative properties—conditions we
want to avoid. For a subset S ⊆ {1, . . . , n}, let N≥(S) be the number of items satisfying at least
those properties in S. I.e.

⋂
i∈S Pi. We will say “x satisfies S” for short. Also, if S = {a, b, c},

let us write for example, N≥(a, b, c) instead of N≥({a, b, c}) for simplicity.

Let N=(S) be the number of x satisfying exactly those properties in S and no properties not
in S. When P represents properties we wish to avoid, then N=(∅) is the number of elements
satisfying none of the properties.

12



Theorem 2.1 (Inclusion/Exclusion).

N=(∅) = N≥(∅)−
∑

i

N≥(i) +
∑
i<j

N≥(i, j)− · · ·

=
∑
S

(−1)|S|N≥(S).

Proof. As in Section 2.3, we will break up the sum focusing on each element. So first, we will
write ∑

S

(−1)|S|N≥(S) =
∑
S

(−1)|S| ∑
x

x satisfies S

1

Here we replace the number N≥(S) by a count of 1 for each element x which satisfies S. This
introduces a second sum into the picture and that will allow us to swap the order of summations.
Currently, the second sum is over all x with respect to the relation “x satisfies S.” When we
put the sum over x outside, we still have the relation “x satisfies S” but rather than summing
over all x with this property, we sum over all S:

∑
S

(−1)|S| ∑
x

x satisfies S

1 =
∑

x

∑
S

x satisfies S

(−1)|S|.

We also move the (−1)|S| inside the second sum because that quantity depends on |S|.

Next, just as we did in Section 2.3, let us say that x satisfies exactly Pi1 , . . . , Pim (m will
depend on x) and let Sx = {i1, . . . , im}. This set is the largest set that x satisfies. Every other
set that x satisfies will be a subset of Sx.

We now break up our sum based on the size of those subsets S ⊆ Sx, using the binomial
coefficients to count the number of such S:

∑
x

∑
S

x satisfies S

(−1)|S| =
∑

x

m∑
k=0

(
m

k

)
(−1)k

︸ ︷︷ ︸
|S|=k and x satisfies S
⇐⇒ |S|=k and S⊆Sx

.

This, by the Binomial Theorem, is the same as∑
x

(1− 1)m.

Remember here that m depends on x.
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As discussed in Note 1, 0m = 0 if m ≥ 1 but if m = 0 then 00 = 1. Saying m = 0 means that
x satisfies exactly 0 properties—which is what we are looking for. So the final simplification
looks like ∑

x

0m =
∑

x
m=0

1 = N=(∅).

2.6 Application 1: Surjections

As in Section 2.4, let X be the set of all functions from [m] to [n] and let Pi be the set of
functions where i is never an output: f(x) ̸= i for any input x.

Lemma 2.1.

a) The number of functions from an m element set to an n element set is nm.
b) The number of functions from an m element set to an n element set that avoid k outputs

is (n− k)m.

Proof.

a) There are n choices for f(1) and n choices for f(2), etc. So there are nm choices in total
for f(1), . . . , f(m).

b) If we are avoiding k outputs then there are only n− k choices for each of f(1), . . . , f(m)
so (n− k)m.

With this in mind, we have N≥(S) = (n − k)m if |S| = k (we avoid at least the specified
k outputs). So by inclusion exclusion, the number of functions which avoid no outputs
(i.e. surjections) is

N≥(∅)−
∑

i

N≥(i) +
∑
i<j

N≥(i, j)− · · ·

= nm −
∑

i

(n− 1)m +
∑
i<j

(n− 2)m − · · · .

And since there are
(n

k

)
ways to choose k outputs to avoid, we can also write this as

nm −
(
n

1

)
(n− 1)m +

(
n

2

)
(n− 2)m − · · · =

∑
k

(
n

k

)
(−1)k(n− k)m.
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The textbook calls this number S(m,n).

ñ Note

In the above application, N≥(S) = (n− k)m only depended on the size k of S. This is
true in many but not all examples.

2.7 Application 2: Derangements

Let X be the set of all permutations of [n]. We wish to count the permutations with no
fixed points. So let Pi be the property that i is a fixed point. Then N=(∅) is the number of
permutations with zero fixed points. This number is called dn in the textbook.

Lemma 2.2.

a) The number of permutations of [n] is n!
b) The number of permutations with at least k specified fixed points is (n− k)!

Proof.

a) Discussed in Chapter 2 of the book.
b) To say that there are k specified fixed points means were are permuting the other n− k

items. Similar to (a), there are (n− k)! ways to permute n− k items.

Applying Inclusion/Exclusion, we thus have

dn = n!−
(
n

1

)
(n− 1)! +

(
n

2

)
(n− 2)!− · · · =

∑
k

(
n

k

)
(−1)k(n− k)!.

Again, there are
(n

k

)
ways to choose a set S of k fixed points and each of these has the same

number N≥(S) = (n− k)!.
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3 Euler’s Totient Function

Consider the number system of the integers mod n. This means we group the numbers based
on whether they have the same remainder when divided by n. For example, 3 · 7 ≡ 1 (mod 10)
because both 21 and 1 have the same remainder when divided by 10.

This number system works a lot like the integers. We have addition, subtraction and multi-
plication. The question is: when can we divide? For example, is it possible to solve 2x ≡ 3
(mod 10) for x? I.e. is there a way to move the 2 to the other side of the equation? The answer
is no, because 2x will never have a remainder of 3.

What about 7x ≡ 3 (mod 10)? This is trickier. Let’s look at our multiples of 7:

0, 7, 14, 21, 28, 35, 42, 49, 56, 63

Ok so we see that 7 · 9 ≡ 3 (mod 10).

The next theorem gives the criterion for when we can “divide both sides by a.”

Theorem 3.1. We can solve the equation ax ≡ b (mod n) for any b if and only if gcd(a, n) = 1.

Proof. First, suppose gcd(a, n) ̸= 1 and call this gcd d. Consider the equation ax ≡ 1 (mod n).
This means that ax has a remainder of 1 when divided by n or in other words ax is 1 more
than a multiple of n: ax = qn+ 1. Now, d is a divisor of both a and n by definition, which
means ax− qn should be a multiple of d. But ax− qn = 1 and we said d ̸= 1, that is impossible.
So ax ≡ 1 (mod n) has no solution.

Next, suppose gcd(a, n) = 1. By Theorem 3.9 of the Keller/Trotter book, also known as
Bézout’s theorem, we can find integers u and v such that au + nv = gcd(a, n) = 1. If we
rearrange, we get au = 1− nv. So au and 1 differ by a multiple of n.

Let’s apply this to our equation: take the equation ax ≡ b (mod n) and multiply by u to get

aux = (1− nv)x ≡ bu (mod n)

Since (1 − nv)x and x differ by a multiple of n, they share the same remainder. Thus our
solution is x ≡ bu (mod n).
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Example 3.1. Let’s follow the steps to solve 7x ≡ 3 (mod 1)0. First, we do Euclid’s algorithm
to find the gcd of 7 and 10.

10 = 7 + 3
7 = 2 · 3 + 1

To get Bézout’s identity: we solve each equation for the remainder term and then substitute
the bigger remainder into the next equation:

3 = 10− 7
1 = 7− 2 · 3 = 7− 2 · (10− 7) = 3 · 7− 2 · 10.

So 3 is our u. Multiply both sides of 7x ≡ 3 (mod 10) by 3 and we get

3 · 7x ≡ 3 · 3 (mod 10)
1 · x ≡ 9 (mod 10)

3.1 The totient function

Numbers where gcd(a, n) = 1 are called “coprime to n.” They show up often when talking
about modular arithmetic. We have a function, ϕ(n) called “Euler’s totient function” which
counts the number of integers less than n which are coprime to n. For example, ϕ(10) = 4
counting 1, 3, 7, 9.

Euler gave the following formula for ϕ(n) in terms of the prime factors p of n:

ϕ(n) = n ·
∏
p|n

p prime

(
1− 1

p

)

Here p | n means p divides n or p is a factor of n.

This is the form we will prove in a minute, but let us also rewrite this formula in maybe a more
helpful way. Say n = pk1

1 · · · pkr
r is the prime factorization of n. Then

ϕ(n) = pk1
1 · · · p

kr
r ·

(
1− 1

p1

)
· · ·
(

1− 1
pr

)
.

Now look at each pair of factors involving pi:

pki
i

(
1− 1

pi

)
= pki

i

(
pi − 1
pi

)
= pki−1

i (pi − 1).
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Putting that together, we get

ϕ(n) = pk1−1
1 (p1 − 1) · · · pkr−1

r (pr − 1).

Example 3.2. For n = 18 = 2 · 32 we have

ϕ(12) = 20(2− 1)31(3− 1) = 6.

You can double check this by listing all the numbers coprime to 18.

3.2 Applying Inclusion/Exclusion

For each of the primes pi which are factors of n. Consider the property Pi which says that a is
divisible by pi. As we’ve been doing, for a subset of these primes, we want to count the number
of a in 0, . . . , n− 1 which are divisible by at least those primes in S.

Lemma 3.1. Let m be a divisor of n. The number of integers a < n which are a multiple of
m is n/m.

Proof. Let’s look at an example first. Suppose n = 100 and m = 5. Then we list the numbers
from 0, . . . , 99 and write the list mod 5. That is:

0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, . . . , 0, 1, 2, 3, 4.

Because n− 1 is one less than n, our last number has a remainder of one less than 5. So we
see every number 0, 1, 2, 3, 4 exactly the same number of times. Since there are 5 possible
remainders, we much see every remainder 100/5 = 20 times. This includes a remainder of 0.

This pattern works generally: we repeat remainders of 0, . . . ,m − 1 and we end on m − 1
because n− 1 is one less than a multiple of m.

So putting this into our inclusion-exclusion notation, if S = {i1, . . . , ik}, then

N≥(S) = n

pi1 . . . pik

.
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3.3 Wrapping up

By Inclusion/Exclusion, the number of whole numbers a < n not divisible by any pi is

N≥(∅)−
∑

i

N≥(i) +
∑
i<j

N≥(i, j)− · · ·

and that is

n−
∑

i

n

pi
+
∑
i<j

n

pipj
− · · · = n

1−
∑

i

1
pi

+
∑
i<j

1
pipj

− · · ·

 .
We should be able to factor a (1 − 1/p1) out of this so let’s work at giving that a go by
separating terms including p1 from those that don’t:

1−
∑

i

1
pi

+
∑
i<j

1
pipj

− · · ·

= 1− 1
p1
−
∑
1<i

1
pi

+ 1
p1

∑
1<j

1
pj

+
∑

1<i<j

1
pipj

− · · ·

=
(

1− 1
p1

)
−

 1
p1

∑
1<i

1
pi
− 1
p1

∑
1<j

1
pj

+

 ∑
1<i<j

1
pipj

− 1
p1

∑
1<i<j

1
pipj

− · · ·
=
(

1− 1
p1

)1−
∑
1<i

1
pi

+
∑

1<i<j

1
pipj

− · · ·

 .
Note: in the second term in the second to last line, the sum over all j > 2 is the same as the
sum over all i > 2 just with a different name given to the variable.

So we are able to factor out (1 − 1/p1) to get a similar expression with one fewer primes.
Similarly, we can factor out (1− 1/p2) and so on until there are no more primes. This gives us
Euler’s product representation for the totient function.
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Part II

Permutations
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4 Permutations

A permutation of a finite set X can be thought of in a few ways. The set of all permutations
of {1, . . . , n} will be denoted Sn. This is also called the symmetric group.

4.1 As a shuffle of the symbols

E.g. 53214 is a shuffle of X = {1, 2, 3, 4, 5}.

This gives us one way of counting the number of permutations. For the first position in the
shuffle, we may write any of the n numbers. For the second position, we have n− 1 numbers
to choose from—we cannot repeat the first. Likewise the third has n− 2 to choose from, not
repeating the first or second. In this way, the number of permutations is

n · (n− 1) · (n− 2) · · · 2 · 1, denoted n!.

4.2 As a function from X to itself

E.g. The shuffle 53214 may be thought of as a function π : X → X where π(i) equals the i-th
number in the shuffle:

π(1) = 5, π(2) = 3, π(3) = 2, π(4) = 1, π(5) = 4.

These functions are often represented by a table:

i 1 2 3 4 5

π(i) 5 3 2 1 4

Something new added by the table/function representation is that we can talk about the inverse
function which undoes the shuffle:
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j = π(i) 5 3 2 1 4

i = π−1(j) 1 2 3 4 5

or reordering the columns:

j 1 2 3 4 5

π−1(j) 4 3 2 5 1

4.2.1 Composition of functions

Given two permutations, π1, π2 : X → X, we can compose them to get a new function (π1 ◦π2).
One way to compute this is via the following procedure:

1. Write the two functions as tables.
2. Reorder the columns of the outermost function in the composition to align with the

output of the innermost function.
3. Stack the tables on top of each other.

E.g. Take π2 to be the function represented by the shuffle 53214 and take π1 to be represented
by the shuffle 13254. So as a table

i 1 2 3 4 5

π1(i) 1 3 2 5 4

Now we shuffle the columns so the top is 53214:

i 5 3 2 1 4

π1(i) 4 2 3 1 5

Then stack this with π2:

i 1 2 3 4 5

j = π2(i) 5 3 2 1 4
π1(j) 4 2 3 1 5

The bottom row is π1 ◦ π2.
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Exercise 4.1. Compute this in the other order: π2 ◦ π1. Observe that the order matters.

Note: in some sources (e.g. books, software), compositions are written as a product in the
reverse order. Sometimes there is an option provided to reverse the multiplication order. Here
are those computations in the SageMath computer algebra system.

sage.combinat.permutation.Permutations.options(mult='r2l')
π1 = Permutation([1,3,2,5,4])
π2 = Permutation([5,3,2,1,4])
π1 * π2

[4, 2, 3, 1, 5]

π2 * π1

[5, 2, 3, 4, 1]
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5 Visual representations of permutations

5.1 As a collection of cycles

Let’s look at a longer permutation now: 541237896. As in Section 4.2, we can view this as a
function where 1 goes to 5, 2 goes to 4 etc. Following the path of a single number we get a
cycle: 1 goes to 5 goes to 3 goes to 1. Likewise 2 goes to 4 goes to 2. And so on.

The entire permutation can be broken up into cycles:

π = Permutation([5,4,1,2,3,7,8,9,6])
π.to_digraph().plot(vertex_size=1500)

5.1.1 Notation

The cycle 1→ 5→ 3→ 1 can be written as (153). In general, (a1, . . . , an) represents the cycle
a1 → a2 → · · · → an → a1. We often omit the commas when every number is a single digit.

Here is how to compute the cycles in SageMath:

π.cycle_string()

'(1,5,3)(2,4)(6,7,8,9)'
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The answer is given as a product (i.e. composition) of cycles.

Elements which do not go anywhere—also called fixed-points—are represented by cycles of
length 1 E.g. (123)(4) represents the two cycles 1 → 2 → 3 → 1 and 4 → 4. We often omit
length 1 cycles from the notation so (123)(4) = (123) as a permutation of 1, 2, 3, 4.

Exercise 5.1. Compute the cycle decomposition for 341859672. You can verify your answer in
SageMath.

π = Permutation([3,4,1,8,5,9,6,7,2])
π.cycle_string()

Note: as mentioned earlier: SageMath omits the cycle (5) representing the fixed point π(5) =
5.

5.1.2 Multiplying Cycles

To multiply cycles, we read from right to left. If our current number appears in the cycle, we
shift over to the right (wrapping back to the start if necessary). E.g. (2, 5)(1, 5, 3) would move
1 to 5 with the first cycle then from 5 to 2 with the second cycle.

You can either do this procedure and produce a shuffle like:

i 1 2 3 4 5

(1, 5, 3) 5 - 1 - 3
(2, 5) 2 5 - - -
Answer 2 5 1 4 3

Here a “-” means the value is unchanged at this step.

Or you can combine this with the procedure of Section 5.1 and produce a product in cycle form
again. Here that is (1, 2, 5, 3) because 1→ 5→ 2 then 2→ 5 then 5→ 3 then 3→ 1.

5.2 Braids

Another visual representation used frequently in the mathematical study of knots is that of
crossing lines. Let’s look at an example:

B.<a,b> = BraidGroup(3)
plot(a * b * a)
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This represents a permutation where the first end ends up in the third position (1→ 3), the
second end ends up in the second position (2 → 2) and the third end ends up in the first
position (3→ 1). Overall, 1 and 3 are swapped, so this permutation is (13).

5.2.1 Transpositions

Cycles of length 2 are called transpositions. E.g. (14) is a transposition which switches 1 and 4.
The picture above represents a composition of 3 transpositions (13) = (12)(23)(12).

Theorem 5.1 (Product of transpositions).

a) Every permutation can be written as a product of transpositions
b) Every permutation can be written as a product of transpositions of adjacent elements.

Another way to say this is that by swapping pairs of elements at a time, we can obtain any
possible shuffle.

Proof. We know that a permutation may be written in terms of cycles. So if we can show that
any cycle can be written as a successive sequence of swaps we are good. We will give a visual
demonstration of this fact:

B.<t1,t2,t3,t4,t5> = BraidGroup(6)
plot(t1 * t2 * t3 * t4 * t5)
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So the cycle (123456) = (12)(23)(34)(45)(56). Remember that compositions are read from right
to left: e.g. (f ◦ g)(i) = f(g(i)) means first do g then do f .

This kind of decomposition generalizes: you can replace (123456) with any cycle of any length.
E.g. (1456) = (14)(45)(56):

sage.combinat.permutation.Permutations.options(mult='r2l', display='cycle')
P = Permutation
P((1,4)) * P((4,5)) * P((5,6))

(1,4,5,6)

For an alternative proof, this decomposition into a sequence of adjacent swaps is exactly how
the sorting algorithm BubbleSort works. We can sort any list using BubbleSort which does
only adjacent swaps. So the shuffle is obtained by reversing those swaps to go from sorted to
shuffled.

5.2.2 Braids versus permutations

You may have noticed in what we did, the word “braid” was used. Braids are similar to
permutation except that we keep track of which strand goes above and which strand goes
below. E.g. the transposition (12) applied twice looks like

B.<a,b> = BraidGroup(3)
plot(a * a)
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As a permutation this is the trivial shuffle 123. But as a braid it is still twisted.

While we are only focused on permutations rather than braids here, we still make use of braids
because SageMath is able to create diagrams for us.

5.2.2.1 The Braid Group in SageMath

The generators of the braid group are adjacent swaps. So the line B.<a, b> = BraidGroup(3)
sets a to a swap of 1, 2 and sets b to a swap of 2, 3. We can obtain the reverse swap with aˆ-1
or bˆ-1

plot(aˆ-1 * aˆ-1)

When converting from braids to permutations, we ignore whether a strand goes over or under
and just focus on the swapping.
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6 Generators

In Theorem 5.1 we saw that every cycle and hence every permutation can be written as a
product of adjacent swaps: (12), (23), (34), . . . , (n− 1, n). Here we will identify some relations
that hold among these generating elements.

Let us call τi = (i, i+ 1) the swap of i and i+ 1.

6.1 Squaring relation

We have τ2
i = 1 where 1 represents the identity permutation (no shuffling). This says that if

we swap i and i+ 1 and then swap again, we get back to a sorted list.

6.2 Commutating

From Exercise 4.1, we saw that in general π1π2 ̸= π2π1. Nonetheless, if we are swapping disjoint
sets of pairs like (12) followed by (34) then there is no interaction between the swaps. So
the order doesn’t matter: (12)(34) = (34)(12). Specifically, τi and τj commute (τiτj = τjτi)
provided i and j are at least 2 apart.

B.<a,b,c> = BraidGroup(4)
plot(a * c)
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a * c == c * a

True

6.3 ABA = BAB

At the top of Section 5.2 we saw that (12)(23)(12) = (13). We also have (23)(12)(23) = (13).
Compare the following pictures.

B.<a,b> = BraidGroup(3)
plot(a * b * a)
plot(b * a * b)

We can see visually that the middle green strand is sliding from one side of the blue/red crossing
to the other.

6.4 Other relations?

It turns out, every way to simplify or manipulate products of transpositions can be reduced to
exactly these three rules:

1. τ2
i = 1

2. τiτj = τjτi for |i− j| ≥ 2 (at least two apart)
3. τiτi+1τi = τi+1τiτi+1
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The proof of this has two stages. One which we have already seen. First, you show that every
permutation can be written as a product of transpositions of adjacent elements (Theorem 5.1).
This shows that you can use τ1, . . . , τn and these rules to write every element of Sn. I.e. the
number of objects generated by these rules is at least n!.

The second step is showing that the number of objects generated by these rules is no more
than n! so that it is exactly the same as Sn. This requires more tools than we have available to
us (i.e. group theory). A proof for those in-the-know may be found here for instance.

We will take it as a fact that these rules describe Sn exactly.
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7 Sign of a Permutation

We established in Theorem 5.1 that every permutation can be written as a product of transposi-
tions. But more than that, in all our examples, the number of transpositions required to perform
a shuffle was always consistently odd or consistently even. For instance, (13) = (12)(23)(12)
has an odd number of transpositions on both sides.

If we look at Section 6.4, we said that every possible way to manipulate a permutation can
be reduced to three rules, each of which preserves the parity (odd or even) of the number of
transpositions.

In case you were unsatisfied with relying on the fact that every relation reduces to the three
given relations, we will present two different proofs that the parity is always consistent: one
here, one in the next section.

For a visualization of this proof, see https://www.youtube.com/watch?v=p6kCYbKIMak
starting at 13:50.

7.1 Step 1: reducing to the identity

Suppose we have two different ways to write a given permutation as a product of transposi-
tions:

π = τ1τ2 . . . τm = τ ′
1τ

′
2 . . . τ

′
n.

(Here the letter τ means any transposition, not just for adjacent elements.)

Our goal is to show that m and n have the same parity (both are odd or both are even). Notice
that if we multiply both sides by τ1, we get

τ1 · τ1τ2 . . . τm = τ1 · τ ′
1τ

′
2 . . . τ

′
n

but τ1 · τ1 means swap the same pair twice, and doing this twice is the same as not doing it at
all. Therefore the τ1 · τ1 cancels and we are left with

τ2 . . . τm = τ1 · τ ′
1τ

′
2 . . . τ

′
n.
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Keep doing this from left to right until we have

1 = τm . . . τ2τ1τ
′
1τ

′
2 . . . τ

′
n.

So saying “m and n have the same parity” is equivalent to saying “1 cannot be written as an
odd number of transpositions.”

7.2 Step 2: setting up the induction hypothesis

Let’s introduce some letters now for our transpositions. Say

1 = (a1b1)(a2b2) · · · (akbk) (7.1)

where ai ̸= bi for all i (we’re always swapping two different things).

We know that k isn’t 1 since a single transposition is not the same as the identity. So look now
at k ≥ 2. We will show that we can always rewrite this product using k − 2 transpositions.

There are a couple ways to phrase this next part of the proof. First, we could say: take as an
inductive hypothesis that for all k′ < k if the identity is written as a product of k′ transpositions
then k′ is even. In this way, going from k to k′ = k − 2 we know that k − 2 is even and hence
so is k.

Another way we could say this: we are always reducing by 2 every time so k − 2− 2− 2− . . .
will either end up at 0 or 1 and we know it can’t end up at 1.

7.3 Step 3: reorganizing the product

Look back at Equation 7.1. Since (ab) = (ba), to keep things consistent, we will assume
that ai < bi always. Let a be the smallest number appearing in any transposition. E.g. for
(23)(34)(23)(24) we have a = 2.

We will slide all the the transpositions with an a in them to the right (towards the beginning
of the composition). Now we can’t just move things without changing the product so we have
to be strategic.

Let’s say we have in the middle of our expression (uv)(xy) where u = a and x ̸= a and so we
want to move (uv) to the right of (xy).
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7.3.1 Case 1: disjoint

If u, v, x, y are all distinct, then the two swaps can be done in either order and (uv)(xy) =
(xy)(uv).

7.3.2 Case 2: two numbers in common

If (uv) = (xy) then (uv)(xy) = (uv)2 = 1 and we have reduced the number of transpositions
by 2 as we said we would.

7.3.3 Case 3: larger number in common

Consider the product (12)(23) = (123) (swap 2, 3 first then 1, 2)

Compare this with the identity (23)(12)(23) = (13) that we worked out in Chapter 6:

34



Multiply both sides on the left by (23) and simplify using (23)(23) = 1 to get (12)(23) =
(23)(13).

In this way, the smallest number is always moving to the right. The rule is (uv)(xy) = (xy)(uv′)
where v′ is the number in (xy) which wasn’t in common.

Exercise 7.1. Work out the diagrams to show that (12)(23) = (23)(13). (I would show you in
SageMath, but the software doesn’t draw (13) very well.)

7.3.4 Case 4: smaller number in common

Using the previous case, we move all the terms having u = a to the right. So now we have
a bunch of terms (av1)(av2) . . . (avr) in the right of our product. We know we have at least
two pairs because if we swap a out of position, something later on has to swap it back into
position.

Also, if any of the adjacent pairs are equal, we can cancel them as in Case 2. Otherwise, we do
something similar to Case 3 where

(12)(23)(12) = (13) =⇒ (12)(23) = (13)(12)

by multiplying on the right by (12)

The feature of this identity is that we have one fewer 1’s, or more generally, one fewer a’s. And
we can keep doing this until we are left with either a single a (impossible) or we eventually
find a pair that cancels.

Exercise 7.2. Draw the diagram for this identity.
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7.4 Summary

We showed that we can push all the transpositions containing a 1 to the right and then moving
those transpositions past each other until we had fewer and fewer 1’s and eventually there must
be a pair with both numbers in common because we can’t just move 1 a single time in our
sequence of transpositions.

Example 7.1. Start with (12)(23)(12)(13). Use Case 3 to swap the first and second:
(23)(13)(12)(13). Now use Case 4 to swap the second and third: (23)(23)(13)(13). Now
cancel using Case 2.

7.5 Notation/Computation

If π is a permutation, common notations for its parity or sign are: sgn π and (−1)π. We say the
sign is +1 if it is an even length product and the sign is −1 if it is an odd length product.

We have the identity sgn(π1π2) = sgn π1 sgn π2 because, for example, multiplying two odd
length products creates an even length product ((−1) · (−1) = +1)

One way to compute this is by decomposing π into cycles. We saw in Theorem 5.1 how to
write cycles in terms of transpositions: (12345) = (12)(23)(34)(45). The observation here is
that odd length cycles become an even length product of transpositions and vice versa.

So the algorithm is:

1. Convert the permutation into a product of cycles.
2. Write a +1 if the cycle has an odd length and a −1 if it has an even length.
3. Multiply those numbers together to find the sign.

Example 7.2. Consider the shuffle 376819254. We can write this as (1369485)(27) this is a
product of a cycle of length 7 and a cycle of length 2. Therefore the sign is (+1)(−1) = −1.

This computation in SageMath:

π = Permutation([3,7,6,8,1,9,2,5,4])
sign(π)

-1
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8 Inversions

We present a second (or third depending if you count the proof we didn’t prove) proof that the
number of transpositions is always ever even or always odd.

Let π be a permutation. An inversion for π is a pair of outputs which are not in sorted order.
I.e. we have i < j to begin with and π(i) > π(j) to end with.

In counting inversions, we look at where π(i) is greater than π(j) for some j that comes after
i.

Example 8.1. Consider the permutation represented by 31254.

We have π(1) = 3 and this is greater than both π(2) = 1, π(3) = 2.

We have π(2) = 1 but this is not greater than anything that comes after.

We have π(3) = 2 but this is not greater than anything that comes after.

We have π(4) = 5 which is greater than π(5) = 4.

So this permutation has 3 inversions: (1 < 2)→ (π(1) > π(2)) and (1 < 3)→ (π(1) > π(3))
and (4 < 5)→ (π(4) > π(5)).

We can use SageMath to check our work:

π = Permutation([3,1,2,5,4])
π.inversions()

[(1, 2), (1, 3), (4, 5)]

8.1 Parity of the number of inversions

Inversions as a concept have a few uses in combinatorics. Relevant to us now is that the number
of inversions has the same parity as the permutation. To show this, we will consider how a
single transposition affects this parity. But since the total number can go up or down, let us
define a quantity which we can analyze to describe the parity.
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For the identity permutation, define

V (1) =
∏
i<j

(j − i)

E.g. for n = 4 this is (2− 1)(3− 1)(4− 1)(3− 2)(4− 2)(4− 3). We’re not interested in the
absolute value here but rather the sign—which for the identity permutation is +1.

More generally, define
V (π) =

∏
i<j

(π(j)− π(i)).

Note that we will have a factor of V (π) which is negative whenever i < j and π(i) > π(j). So
the sign of V (π) tells us the parity of the number of inversions.

What’s useful here is that factoring out the various −1’s and reordering, we can write V (π) =
±V (1) where it is a +1 if we have an even number of inversions and a −1 if we have an odd
number.

8.2 Analysis

We want to show that a single transposition changes V (1) to −V (1). Then a sequence of odd
length will have a sign of −1 and one of even length will have a sign of +1, matching what we
did in Chapter 7.

Suppose we apply the transposition (ij) with i < j. Right away, we get one inversion because
now π(i) > π(j). Let’s look at the other numbers. Suppose x < i < j. Then after swapping,
we still have x on the left of i, j$ so no inversions here. Likewise, if i < j < x then x will still
be on the right afterwards.

The last case is that i < x < j. Then we get two inversions going from i, x, j to j, x, i. One
between i and x and one between x and j since both these pairs are now out of order.

To summarize, this single transposition gives us:

• 0 inversions for anything left of i or right of j,
• 2 inversions for each number in between,
• 1 inversion for the pair i, j

So overall we get an odd number of inversions for each swap. This shows that the number of
inversions is odd if and only if the number of swaps is odd.
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9 Exercises

1. Convert 2, 12, 3, 5, 4, 9, 8, 7, 6, 10, 1, 11 to a product of cycles and draw the associated
digraph.

� Hint

Reference: Section 5.1

• start with 1

– there is a 2 in position 1
– there is a 12 in position 2
– keep going. . . x in position 12. . . until you get back to 1

• write down the first cycle (1, 2, 12, . . . ) (don’t repeat the 1 at the end)
• do the same procedure with the next number which hasn’t been seen so far (i.e. 3)
• keep going until every number is part of a cycle
• optionally, throw away cycles of length 1

2. Convert (1, 8, 12)(2, 3, 6, 7, 9)(4, 10, 11) to a shuffle of 1, . . . , 12

� Hint

Reference: Section 5.1.2
Since the cycles are disjoint (don’t share any numbers), the procedure here is:

• look for each number from 1 to 12
• write down the number following it in its cycle (e.g. 1 is followed by 8 so we write

an 8 in the first position of the shuffle, 2 is followed by 3, 3 by 6, etc.)
• if a number does not appear (i.e. 5), then the permutation leaves it unchanged and

it remains in its starting position (so you should have a 5 in position 5 at the end)

3. Show that (12)(23)(34)(23)(12) = (14) by drawing the braid diagram.

4. Compute the sign of the permutations in 1. and 2.
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Problem 1: Problem 2:

� Hint

Reference: Section 7.5
Regardless of whether the cycles are disjoint or not (here they are), odd cycles are even
and even cycles are odd (in terms of number of swaps). So multiply 1 for each odd length
cycle and −1 for each even length cycle. For example, (1, 8, 2) has an odd length (even
number of swaps) so we multiply +1 for it.

5. Write (182635) as a product of transpositions.

� Hint

Reference: Theorem 5.1
The rule is like (a, b, c, d) = (a, b)(b, c)(c, d). The transpositions are adjacent pairs.

Solutions

1. (1, 2, 12, 11)(4, 5)(6, 9)(7, 8)

2. 8, 3, 6, 10, 5, 7, 9, 12, 2, 11, 4, 1

40



3.
4. both even (+1)
5. (1, 8)(8, 2)(2, 6)(6, 3)(3, 5)
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Part III

Generating Functions
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10 Weight Functions

10.1 Recap: Strings

Recall that an alphabet is a set of characters like {0, 1} is the alphabet for binary. A string
is an ordered sequence of characters from a fixed alphabet. E.g. 011011 and 00011 are binary
strings.

Additionally, ε will denote the empty string and multiplication of strings will be done by
concatenation. E.g. 011 · 000 = 011000.

For most examples that follow, we will work with binary strings of 0s and 1s unless otherwise
specified.

10.2 Definition

Let S be a set of strings (e.g. all binary strings or all ternary strings). A weight function on
S is a function f : S → Z satisfying:

• f(x) ≥ 0
• f(uv) = f(u) + f(v) when u and v are two strings.

Example 10.1. The length l of a string is a weight. E.g. l(011) = 3, l(011 · 10011) =
l(011) + l(10011).

Example 10.2. f(s) = the number of 1s in s is a weight. E.g. f(011) = 2 and f(011 ·10011) =
f(011) + l(10011).

10.2.1 Key property

The definition of a weight means they behave kind of like a logarithm. Therefore, if we do
xf(s), we get a function which satisfies

xf(uv) = xf(u) · xf(v).

This is why we are going to have a bunch of xs all over the next few sections.
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11 Generating Functions

11.1 Definition

Let L be a subset of strings. These is also called a language. Let f be a weight function. We
define the (ordinary) generating function of L or OGF as

ΦL(x) = Φf
L(x) =

∑
s∈L

xf(s).

ñ Note

It is common in mathematical definitions to write something like

ΦL(x) = Φf
L(x) = · · · .

This means that I am calling attention to the fact that Φ depends on f but also saying
that because f isn’t going to change much, we are going to drop the f from the notation
most or all of the time.
It is also common to call generating functions by other letters, like A(x) but this needs to
be introduced first by saying that A is the OGF wheras ΦL means this implicitly.

Example 11.1. Let L be the subset {01, 1110, 11, 0, 1, 111000, ε} of binary strings. Let f be
the length weight. The OGF of L is

ΦL(x) = xf(01) + xf(1110) + xf(11) + xf(0) + xf(1) + xf(111000) + xf(ε)

= x2 + x4 + x2 + x1 + x1 + x6 + x0

= 1 + 2x+ 2x2 + x4 + x6

11.2 Monomials

Inside ΦL(x), each monomial anx
n (after collecting terms) represents that L has an strings

where f equals n (e.g. the length equals n).
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Example 11.2. For the language L of Example 11.1 above, we have for instance, 2 strings of
legnth 1, represented by the monomial 2x1. We have 1 string of length 6 represented by the
monomial 1x6. We have no strings of length 5, represented by the lack of a monomial with x5.
We could also say that the coefficient of x5 is 0.

Exercise 11.1. Let L be the set of all binary strings of length ≤ 5 which have no 11.

a) for n = 0, 1, 2, 3, 4, 5, list all the strings with no 11
b) write down the generating function with respect to the length weight
c) write down the generating function with respect to the “number of 1s” weight

11.2.1 Using generating functions to count

The monomials anx
n are created by adding up all the words in L of weight n. So another way

to describe the generating function is

ΦL(x) =
∑
s∈L

xf(s) =
∞∑

n=0
#{s ∈ L : f(s) = n}xn. (11.1)

This means the general strategy for getting an answer from a generating function is to—by
some process—write it as as a power series

∑
anx

n making sure that it’s xn. Then an is the
answer to the question: how many strings of weight n are there where (whatever conditions we
set).

Theorem 11.1 (Addition Theorem). If L and L′ are disjoint, then ΦL∪L′(x) = ΦL(x)+ΦL′(x).

Proof. To say that L and L′ are disjoint implies that

#{s ∈ L ∪ L′ : f(s) = n} = #{s ∈ L : f(s) = n}+ #{s ∈ L′ : f(s) = n}.

Substituting this into Equation 11.1 yields

ΦL∪L′(x) =
∞∑

n=0
#{s ∈ L : f(s) = n}xn +

∞∑
n=0

#{s ∈ L′ : f(s) = n}xn

= ΦL(x) + ΦL′(x).
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11.3 Infinite series

We’ve looked at examples where L is a finite set. In many examples, L will be an infinite set.
For instance consider the infinite set of all strings of 0s. I.e. {ε, 0, 00, 000, 0000, . . . }. For this
language, we have the generating function

A = 1 + x+ x2 + x3 + · · · = 1
1− x.

� Geometric series formula

To prove this formula, we take A and multiply everything by x because that creates a lot
of similar terms:

A = 1 + x+ x2 + x3 + · · ·
xA = x+ x2 + x3 + · · ·

A− xA = 1

From which we solve for A = 1
1− x .

Example 11.3. Let L is the language of all binary strings, i.e. L = {∅, 0, 1, 00, 01, 10, 11, 000, . . . }.
We know that there are 2n binary strings of length n so the OGF of L is

ΦL(x) =
∞∑

n=0
2nxn =

∞∑
n=0

(2x)n = 1
1− 2x.

ñ Note

In a calculus or analysis course, we would want to specify here that |x| < 1
2 for this series

to converge. In combinatorics, we treat these series purely algebraically. That means as
an infinite list of monomials without care whether or not the series converges. People use
the term formal power series to refer to this concept.

11.3.1 When do we care about convergence?

For the most part, we don’t. Meaning an infinite series is still valid even if it doesn’t converge
other than when x = 0. However, there are arguements using analysis which only apply to
convergent power series. For instance, the fact that the series

1 + x+ 2x2 + 3x3 + 5x4 + 8x5 + · · · = 1
1− x− x2

46



converges for |x| < 1
ϕ where φ = 1+

√
5

2 is connected to the fact that the Fibonnaci numbers are
approximately cφn for some constant c.

Exercise 11.2. In fact, one can show that

Fibn = round
(
φn

√
5

)
.

Use a calculator or a computer to check this works!
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12 Multiplication of Generating Functions

Suppose L,L′ are two languages. We define the concatenated language LL′ by concatenating a
string from L and a string from L′ in all possible ways:

LL′ = {uv : u ∈ L, v ∈ L′}.

The utility of this is that many common languages of strings can be written as concatenations
of smaller, more simpler languages. And, it will turn out, we can compute the OGF of the
more complex language out of the OGFs for the simpler languages.

12.1 Multiplication of Monomials

Suppose we have a language L which consists of 10 strings, each of length 5. Suppose we
also have a language L′ consisting of 6 strings, each of length 7. Concatenating any pair of
strings will always yield a string of length 12 and there are 60 such pairs. This computation is
represented by the following multiplication of generating functions:

(10x5) · (6x7) = 60x12.

12.2 A step further

Now suppose L is the same as before: 10 strings of length 5, and this time L′ consists of 3
strings of length 4 and 7 strings of length 8. Now if we concatenate to form LL′ we are either
combining a string of length 5 with one of length 4 (in 10 · 3 ways) or a string of length 5
with one of length 8 (in 10 · 7 ways). Again, this computation is reflected in the product of
polynomials

10x5 · (3x4 + 7x8) = 30x9 + 70x13.

Exercise 12.1. Suppose L consists of 3 strings of length 4 and 8 of length 6. Suppose L′

consists of 2 strings of length 1 and 5 strings of length 4. What will LL′ consist of?
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12.3 Multiplication theorem

Theorem 12.1 (Multiplication Theorem). Let L and L′ be two different languages. Let f be a
common weight function like the length of a string. Then

ΦLL′(x) = ΦL(x)ΦL′(x).

Proof. We have

ΦLL′(x) =
∑

w∈LL′

xf(w)

=
∑
u∈L

∑
v∈L′

xf(uv)

=
∑
u∈L

∑
v∈L′

xf(u)xf(v)

using Section 10.2.1. Continuing, we get

=
∑
u∈L

xf(u) ∑
v∈L′

xf(v)

= ΦL(x)ΦL′(x).

� Tip

One might wonder whether
∑
ai
∑
bj means (

∑
ai)(

∑
bj) or

∑
(ai
∑
bj). It turns out

these are the same, and it is explained by the distributive property of multiplication. For
example,

(a1 + a2 + a3)(b1 + b2) = a1(b1 + b2) + a2(b1 + b2) + a3(b1 + b2).

12.4 Strings with 0s followed by 1s

Let L be the language of strings with only 0s and let L′ be the language of strings with only
1s. In Section 11.3, we saw that these languages have generating functions 1

1−x (weighting by
length). By theorem Theorem 12.1, the language LL′ of all strings of 0s followed by 1s has
generating function

1
(1− x)2 .
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We can compute this in a couple ways. First, we ask the question: “how many strings are there
of length n consisting of a string of 0s followed by a string of 1s?” E.g. for n = 4 there are 5
such strings:

0000, 0001, 0011, 0111, 1111.

We can look at this as: there are either 0, 1, 2, 3, 4 ones. In general, there will be n+ 1 strings
of length n (corresponding to the monomial (n+ 1)xn). Therefore

1
(1− x)2 =

∞∑
n=0

(n+ 1)xn = 1 + 2x+ 3x2 + 4x3 + · · · .

12.4.1 Calculus?

The monomials we’ve just computed look suspiciously like derivatives: 1 is the derivative of x,
2x is the derivative of x2, 3x2 is the derivative of x3, and so on. I.e., we have

1
(1− x)2 =

∞∑
n=0

d

dx
xn.

� Tip

The sums
∑
nxn−1 and

∑
(n + 1)xn are equal. In words: each sum is adding up all

monomials whose coefficient is exactly 1 more than the exponent. Algebraically, we can
transform the first sum to the second by letting m = n− 1 and n = m+ 1. Then∑

nxn−1 =
∑

(m+ 1)xm.

When working with OGFs, we often want to make such tranformations so that the question
of “how many strings of length n” can be read directly from the summand anx

n: there
are an strings of length n.

In our calculus courses, we learn that we can often take the derivative of a series term-by-term.
Or in other words, we can safely move the derivative operator from inside the term to outside
and vice versa: ∞∑

n=0

d

dx
xn = d

dx

∞∑
n=0

∞∑
n=0

xn.

This we recognize as the geometric series from Section 11.3. So that means we should expect

1
(1− x)2 = d

dx

1
1− x.

Indeed, that is the case.

The following is a result of analysis that is very potent for many OGF problems.
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Theorem 12.2. If
∑
anx

n converges to a function f(x) (and the radius of convergence is not
zero), then ∑ d

dx
anx

n = f ′(x)

(and the radius of convergence is preserved).

In Section 11.3.1, we said that these generating functions are still valid even when they don’t
converge. But there is utility here in that if we have an expression to represent an infinite
sum like how 1

1−x represents the geometric series, then we can compute the derivative of the
expression and of the infinite series.

Example 12.1. Given that

1
(1− x)2 = 1 + 2x+ 3x2 + 4x3 + · · · =

∑
nxn−1,

we can compute the derivative on both sides to obtain

2
(1− x)3 = 2 + 6x+ 12x2 + 20x3 + · · · =

∑
n(n− 1)xn−2.

If we divide by 2 we might recognize this as

1
(1− x)3 =

∑ n(n− 1)
2 xn−2 =

∑(
n

2

)
xn−2 =

∑(
n+ 2

2

)
xn.
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13 Stars and Bars Revisited

Suppose we have 2 people and n identical objects to distribute. Let’s say for now that a person
gets 0 or more objects but all n objects are distributed. An example arrangement we might
create with stars and bars would look like

∗ ∗ ∗ ∗ ∗ | ∗ ∗ ∗.

The key insight is that if we change this to

0 0 0 0 0 | 1 1 1.

Now it looks like the problem we studied in Section 12.4. The bar here is no longer necessary
to know where the first group ends and the second begins.

Now we can check that our stars-and-bars formula agrees with the formula computed in
Section 12.4. Indeed, that formula is (

n+ 1
1

)
= n+ 1.

13.1 From 2 people to k people

Let’s copy the key insight for the k = 2 case. A distribution of n objects to k people, with each
receiving 0 or more, looks like a string

1 · · · 12 · · · 23 · · · 3 · · · · · · k · · · k.

Here the number of is in the string is the number of objects person i receives. E.g.

1122223555

means person 1 receives 2 objects, person 2 receives 4, person 3 receives 1, person 5 receives 3,
and everyone else (including person 4) receives none.
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13.1.1 Applying the multiplication theorem

Let Li be the language of strings consisting of 0 or more of the character i. Then the stars-
and-bars language for k people, is L1L2 · · ·Lk. We also know from Section 11.3 that each of
these language has a generating function of 1

1−x . It follows that our stars-and-bars language
has a generating function of

1
(1− x)k

=
∞∑

n=0

(
n+ k − 1
k − 1

)
xn.

We know these are the coefficients because we know there are
(n+k−1

k−1
)

stars-and-bars strings of
length n (i.e. that many ways to distribute the n objects among k people).

Exercise 13.1. Use proof by induction to show that

1
(1− x)k

=
∞∑

n=0

(
n+ k − 1
k − 1

)
xn.

Use the derivative to go from case k to case k + 1. Take the geometric series as the base case
(k = 1).

Hint: the derivative is going to reduce the exponent from xn to xn−1 so to get a step ahead of
that, we can add 1 everywhere we see n:

1
(1− x)k

=
∞∑

n+1=0

(
n+ k

k − 1

)
xn+1.

13.2 Variations of Stars and Bars

How do do the stars and bars problem where every person gets at least 1 object? Let’s look
back at our work:

1. Broke up the problem into a concatenation L1L2 · · ·Lk

2. Li = {ε, i, ii, iii, . . . }
3. The generating function of Li is 1

1−x
4. Use the multiplication principle to conclude that the generating function of L1L2 · · ·Lk

is 1
(1−x)k

The second step is where we need to start making changes; if each person gets at least 1 object,
then Li should instead be {i, ii, iii, . . . } with generating function

xf(i) + xf(ii) + xf(iii) + · · · = x+ x2 + x3 + · · · = x

1− x.

53



� General Geometric Series

In general, a geometric series will have some initial term a and then each succesive term
is multiplied by a common ratio r. We can factor out the initial term a to evaluate:

a+ ar + ar2 + ar3 + · · · = a(1 + r + r2 + r3 + · · · ) = a

1− r .

Mnemonic: “initial term over 1 minus the common ratio.” E.g. 3x+6x3 +12x5 +24x7 + · · ·
has an inital term of 3x and a common ratio of 2x2. So this evaluates to 3x

1−2x2 .

Substituting this new generating function into our previous steps, we find that the stars-and-bars
generating function with everyone getting at least 1 object is(

x

1− x

)k

= xk

(1− x)k
= xk

∞∑
n=0

(
n+ k − 1
k − 1

)
xn =

∞∑
n=0

(
n+ k − 1
k − 1

)
xn+k.

In order to get the number of solutions with m objects, we need the coefficient of xm, so we
need n+ k = m. Changing n+ k to m, we get

xk

(1− x)k
=

∞∑
m=k

(
m− 1
k − 1

)
xm.

This matches our result of
(m−1

k−1
)

ways to distribute m objects to k people, with each person
receiving at least 1.

13.2.1 Other restrictions

Let’s take the problem
x1 + x2 + · · ·+ xk = n,

where xi ≥ 1. Now consider a restriction like 5 ≤ x1 ≤ 13. This changes the language L1 to
{11111, 111111, · · · , 1111111111111} and the generating function of L1 to

x5 + x6 + · · ·+ x13 = x5 − x14

1− x .

� Finite Geometric Sums

Suppose we have a finite geometric sum with initial term a, common ratio r and proceeding
for some number of steps. Then using the same method as Section 11.3, we can compute
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the sum

S = a+ ar + ar2 + · · ·+ arm

rS = ar + ar2 + · · ·+ arm + arm+1

S − rS = a − arm+1.

This yields the formula S = a−arm+1

1−r . Mnemonic: take the initial term and subtract from
it the term which would come after the last term (first minus next) over 1− r.

Combining this with the generating functions x
1−x for L2, L3, . . . , Lk, our restricted problem

has an overal generating function of

x5 − x14

1− x ·
(

x

1− x

)k−1
= xk−1(x5 − x14)

(1− x)k
.

We will cover how to read the number of solutions from such a generating function in the next
section. For now, let’s address one last modification.

ñ General Method

Let L1 represent the possible number of objects person 1 can receive. E.g.

• if person 1 receives 0 or more, then L1 = {ε, 1, 11, 111, . . . }—with OGF x0 + x1 +
x2 + · · · = 1

1−x

• if person 1 receives 1 or more, then L1 = {1, 11, 111, . . . }—with OGF x1 + x2 + x3 +
· · · = x

1−x

• if person 1 receives 0, 1, 2, then L1 = {ε, 1, 11}—with OGF x0 + x1 + x2

• if person 1 receives an even number, then L1 = {ε, 11, 1111, . . . }—with OGF
x0 + x2 + x4 + · · · = 1

1−x2 .

Do this for each person and then multiply the OGFs together for the full problem.

13.3 Slack variables

Consider the problem
x1 + x2 + · · ·+ xk ≤ n

with xi ≥ 0.

The method for solving this is to add a slack variable y with y ≥ 0. This adds to our proceedure
a k + 1-st language Ly. This gives us the generating function
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1
(1− x)k+1 =

∞∑
n=0

(
n+ k

k

)
xn

Indeed, the coefficient
(n+k

k

)
matches our previous solution to this problem.

If on the other hand we had xi ≥ 1 then the generating functions for the Li languages is
x

1−x and we multiply this still by 1
1−x for Ly. Here there is an asymmetry between Ly, which

contains the empty string, and the languages Li which don’t. So for this problem, we have

xk

(1− x)k+1 = xk
∞∑

n=0

(
n+ k

k

)
xn =

∞∑
n=0

(
n+ k

k

)
xn+k =

∞∑
n=k

(
n

k

)
xn.

13.4 Summary

a) For x1 + · · ·+ xk = n and xi ≥ 0, we have the OGF

1
(1− x)k

=
∞∑

n=0

(
n+ k − 1
k − 1

)
xn.

b) For x1 + · · ·+ xk = n and xi ≥ 1, we have the OGF

xk

(1− x)k
=

∞∑
n=k

(
n− 1
k − 1

)
xn.

c) For x1 + · · ·+ xk ≤ n and xi ≥ 0, we have the OGF

1
(1− x)k+1 =

∞∑
n=0

(
n+ k

k

)
xn.

d) For x1 + · · ·+ xk = n and xi ≥ 1, we have the OGF

xk

(1− x)k+1 =
∞∑

n=k

(
n

k

)
xn.
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14 Coefficient Extraction

In this section, we develop some techniques for extracting coefficients from generating functions.
Remember that coefficient of xn represents the number of solutions of weight n. So knowing
that the generating function is, for example,

A(x) = xk−1(x5 − x14)
(1− x)k

=
∑

anx
n,

our goal is to find an. A common notation for this is an = [xn]A(x).

. Warning

Be careful! This is not the same thing as A(n). Plugging in n is not the way to find the
coefficient. For example, the coefficient of x2 in the quadratic f(x) = 2x2 + 3x + 1 is
[x2]f(x) = 2 and not f(2) which equals 15.

14.1 Shifts

Multiplying A(x) by xk shifts the sequence left or right (depending on whether k is positive or
negative):

xk
∑

anx
n =

∑
anx

n+k =
∑

an−kx
n.

The second equals sign is obtained either by substituting n← n+ k or by noticing that the
coefficient is always k less than the exponent.

� Substituting inside a sum

Consider a summation like ∞∑
k=2

k(k − 1)xk−2.

If we want to write this as a sum where xk is the exponent in our summand, then we can
either
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1) add 2 everywhere we see k:

∞∑
k+2=2

(k + 2)(k + 1)xk =
∞∑

k=0
(k + 2)(k + 1)xk,

2) make a substitution of n = k − 2 and k = n+ 2 to get

∞∑
n+2=2

(n+ 2)(n+ 1)xn.

Both methods are equivalent.

Putting this together, we have the following result.

Theorem 14.1 (Coefficient Shift). If A(x) =
∑
anx

n then

[xn]xkA(x) = [xn−k]A(x) = an−k.

“The coefficient of xn in xkA(x) is an−k.”

14.2 Sums and differences

Suppose A(x) =
∑
anx

n, B(x) =
∑
bnx

n are two power series. Then for any constants λ, µ, we
have

λA(x) + µB(x) = λ
∑

anx
n + µ

∑
bnx

n =
∑

(λan + µbn)xn.

In terms of our [xn] operator, we record the following result.

Theorem 14.2 (Linear Combinations).

[xn](λA(x) + µB(x)) = λ[xn]A(x) + µ[xn]B(x).

14.3 Derivatives

As we saw earlier,
A′(x) =

∑
nanx

n−1 =
∑

(n+ 1)an+1x
n.

Theorem 14.3 (Derivatives and Antiderivatives).

[xn]A′(x) = (n+ 1)[xn+1]A(x).

Or for antiderivatives,
[xn]A(x) = 1

n
[xn−1]A′(x).
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14.4 Newton’s Binomial Theorem

We’ve seen the Binomial Theorem,

(1 + x)n =
n∑

k=0

(
n

k

)
xk.

And, in the previous section, we worked out power series for (1−x)−n. These kinds of functions
are quite common in combinatorics, and not just for integer exponents either.

Definition 14.1. The general binomial coefficient is(
r

k

)
= r(r − 1)(r − 2) · · · (r − k + 1)

k!

and we define this for any real (or complex) number r.

What Newton observed, is that when you take the derivative of f(x) = (1 + x)r a few times,
you get

r(1 + x)r−1 then r(r − 1)(1 + x)r−2 then r(r − 1)(r − 2)(1 + x)r−3, . . .

Theorem 14.4 (Newton’s Binomial Theorem). The Taylor series of (1 + x)r is

∞∑
k=0

(
r

k

)
xk.

Proof. We’ve seen above that for f(x) = (1 + x)r, we have

f (k)(x) = r(r − 1)(r − 2) · · · (r − k + 1)(1 + x)r−k.

Plugging this into the formula for a Taylor series,

(1 + x)r =
∞∑

k=0

f (k)(0)
k! xk =

∞∑
k=0

r(r − 1)(r − 2) · · · (r − k + 1)
k! =

∞∑
k=0

(
r

k

)
xk.

ñ Note

These series converge for at least |x| < 1 (and so techniques of calculus apply to analyzing
these series). Convergence for x = ±1 depends on r. And of course, if r is a whole number
then the series is finite and converges everywhere.

59



14.5 Examples

Let’s finally get to solving the problem of Section 13.2.1. Recall that we had the generating
function

A(x) = xk−1(x5 − x14)
(1− x)k

= xk+4 − xk+13

(1− x)k
.

Now we’re going to combine this with the first formula from Section 13.4 to get

[xn]x
k+4 − xk+13

(1− x)k
= [xn]xk+4 1

(1− xk) − [xn]xk+13 1
(1− x)k

= [xn−k−4] 1
(1− x)k

− [xn−k−13] 1
(1− x)k

=
(

(n− k − 4) + k − 1
k − 1

)
−
(

(n− k − 13) + k − 1
k − 1

)

=
(
n− 5
k − 1

)
−
(
n− 14
k − 1

)
.

� Coefficient extraction with the formulas

The formula from Section 13.4 says

1
(1− x)k

=
∞∑

n=0

(
n+ k − 1
k − 1

)
xn.

That means that the coefficient of xn is

[xn] 1
(1− x)k

=
(
n+ k − 1
k − 1

)
.

If we want to apply this to a more complex power of x, we do so by substituting where
we see n, for example,

[xn+1] 1
(1− x)k

=
(

(n+ 1) + k − 1
k − 1

)
=
(
n+ k

k − 1

)
.

14.5.1 Negative Binomial Theorem

Comparing Theorem 14.4 and formula (a.) of Section 13.4 yields an interesting result:

1
(1− x)k

=
∞∑

n=0

(
n+ k − 1
k − 1

)
xn =

∞∑
n=0

(
−k
n

)
(−x)n. (14.1)
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Note that we are looking at (1− x)−k not (1 + x)−k hence the (−x) on the right.

The next theorem is most often stated with n and k swapped. We also use the identity(a+b
a

)
=
(a+b

b

)
.

Theorem 14.5 (Negative Binomial Theorem).(
−k
n

)
(−1)n =

(
n+ k − 1
k − 1

)
=
(
n+ k − 1

n

)
.

Or, with n and k in the usual position:(
−n
k

)
(−1)k =

(
n+ k − 1
n− 1

)
=
(
n+ k − 1

k

)
.

Like many things in combinatorics, it’s interesting to give a second proof of this beyond the
generating function proof in Equation 14.1.

Proof. (
−n
k

)
(−1)k = (−n)(−n− 1)(−n− 2) · · · (−n− k + 1)

k! (−1)k

= (n)(n+ 1)(n+ 2) · · · (n+ k − 1)
k!

= (n+ k − 1)(n+ k − 2) · · · (n+ 1)(n)
k!

=
(
n+ k − 1

k

)
.

In line 2, we distribute one −1 to each of the k factors in the numerator.

14.5.2 Central Binomial Theorem

We’ve seen the binomial theorem with a whole number exponent. We’ve seen it with a negative
integer exponent. The next place to go is fractions. Let’s start with n = 1

2 . For reference, here
are the first couple values of this:

for k in range(4):
print(binomial(1/2, k))
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1
1/2
-1/8
1/16

It would seem that these are ±1 over some power of 2 but if we continue our computation, we
find that the next value is −5/128.

In order to get to the bottom of this, we need to work this out from the definition:

(
1/2
k

)
=

1
2(1

2 − 1)(1
2 − 2) · · · (1

2 − k + 1)
k!

=
1
2(−1

2)(−3
2)(−5

2) · · · (−2k−3
2 )

k!

=
(−1

2)k−1(1)(3)(5) · · · (2k − 3)
2k!

= (−1)k−1 (1)(3)(5) · · · (2k − 3)
2kk! .

This is a pretty good formula. We can also write it in terms of the double factorial which is the
product of all the odd numbers up to 2k − 3. (It’s called double because the factors decrease
by 2 each time instead of 1.)

But like in the Wikipedia article, we can write double factorials in terms of more usual factorials.
We do this by adding in the missing even numbers to the numerator and balancing that out in
the denominator:

(
1/2
k

)
= (−1)k−1 (1)(3) · · · (2k − 3) · (2)(4) · · · (2k − 2)

2kk! · (2)(4) · · · (2k − 2)

= (−1)k−1 (1)(2)(3) · · · (2k − 3)(2k − 2)
2kk! · 2k−1(1)(2) · · · (k − 1)

= (−1)k−1 (2k − 2)!
22k−1k!(k − 1)!

= (−1)k−1 1
22k−1k

(
2k − 2
k − 1

)

Let’s do this once more with n = −1/2 but going through the steps a bit quicker:
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(
−1/2
k

)
=

(−1
2)(−3

2)(−5
2) · · · (−2k−1

2 )
k!

= (−1)k 1 · 3 · 5 · · · (2k − 1)
2kk!

= (−1)k (2k)!
2kk! · (2)(4) · · · (2k)

= (−1)k (2k)!
2kk! · 2kk!

= (−1)k 1
4k

(
2k
k

)
.

Let us record these results as a theorem.

Theorem 14.6 (Half Binomials).(
1/2
k

)
= (−1)k−1 1

22k−1k

(
2k − 2
k − 1

)
and

(
−1/2
k

)
= (−1)k

4k

(
2k
k

)
.

The first formula is only valid for k ≥ 1. If k = 0 then we get
(1/2

0
)

= 1 (product of zero terms
in the numerator equals 1 and the denominator is 0! = 1).

Example 14.1. Take the second formula, and use it with Theorem 14.4. We will put (−4x)k

instead of xk to cancel the (−1/4)k. That is,

1√
1− 4x

= (1− 4x)−1/2 =
∞∑

k=0

(
−1/2
k

)
(−4x)k

=
∞∑

k=0

(−1)k

4k

(
2k
k

)
(−4x)k

=
∞∑

k=0

(
2k
k

)
xk

This is a neat little result in and of itself but there is deeper implications here. Consider the
number of binary strings of length 2k with an equal number of 0s and 1s. That means there
are k of each, and that gives us the formula

(2k
k

)
. These are called the central binomial

coefficients because they appear right down the center of Pascal’s triangle.

For those of you who have taken computer science or mathematical linguistics, there is a
concept known as a “regular language”—languages which can be parsed by a regular expresion1.

1We’ll define many of these terms in a later section for those of you who haven’t seen them before.

63



For these regular languages, we will see later on, that they always yeild a rational generating
function. Here we have a non-rational generating function and indeed this language of strings
with equal numbers of 0s and 1s is not a regular language.

Going beyond regular languages, the Chomsky–Schützenberger Theorem says that if you have
an unambiguous context-free grammar, then the generating function for that language is
algebraic. That is what we are looking at with 1√

1−4x
. This is an algebraic function because it

is a square root of a rational function. Indeed, the language of strings with equal numbers of
0s and 1s is a context-free language.

14.5.3 Catalan Numbers

If you remember the formula for the Catalan numbers even vaguely, you’ll recognize the
(2k

k

)
.

If you squint real hard, the first formula of Theorem 14.6 looks vaguely similar once you deal
with the (−1)k and the 4k as we did in Example 14.1. Let’s dig into that.

First, recall the decomposition we had for Dyck paths.

(0, 0)

(k, k)

(n, n)

Ck−1

Cn−k

Figure 14.1: Dyck path decomposition based on the first place the path hits the line y = x

In terms of “the language of Dyck paths,” what this says is that a Dyck path of length n is
equal to

1) a shift one step up from the diagonal
2) a Dyck path of length k − 1
3) a Dyck path of length n− k

Here’s the beauty of generating functions: as long as we keep track of the shifts, we don’t need
to keep track of the lengths of the subwords or subpaths. So we can describe the language of
Dyck paths in simpler terms: it is a shift, together with two smaller Dyck paths. Therefore, if
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we represent our shift by the monomial x, and our Catalan generating function by C(x), what
we have here is xC(x)2.

We almost have it, we just need to be careful of the edge case. If n = 0, the path from (0, 0) to
(0, 0) is a valid Dyck path which involves no shift. So a Dyck path is either

a) this length 0 Dyck path, which has OGF x0 = 1
b) a shift, together with two Dyck paths, with OGF xC(x)2.

Therefore, C(x) satisfies the equation

C(x) = 1 + xC(x)2.

If you solve this quadratic equation using the quadratic formula, we find that

C(x) = 1±
√

1− 4x
2x . (14.2)

In order to get numbers out of this, we use Theorem 14.4 to expand the square root (separating
the k = 0 term so we can apply the formula from Theorem 14.6):

√
1− 4x = 1 +

∞∑
k=1

(
1/2
k

)
(−4x)k

= 1 +
∞∑

k=1
(−1)k−1 1

22k−1k

(
2k − 2
k − 1

)
(−4x)k

= 1 +
∞∑

k=1

−2
k

(
2k − 2
k − 1

)
xk.

The presence of the − sign indicates that we want to use the negative square root in Equa-
tion 14.2. Doing this, we obtain

−
√

1− 4x = −1 +
∞∑

k=1

2
k

(
2k − 2
k − 1

)
xk

1−
√

1− 4x =
∞∑

k=1

2
k

(
2k − 2
k − 1

)
xk

1−
√

1− 4x
2x =

∞∑
k=1

1
k

(
2k − 2
k − 1

)
xk−1

=
∞∑

k=0

1
k + 1

(
2k
k

)
xk

(adding 1 to each k to get from k − 1 to k).

We’ve now found another way to get our Catalan number formula.
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Theorem 14.7 (Catalan OGF). The generating function for the Catalan numbers is

C(x) = 1−
√

1− 4x
2x =

∞∑
k=0

1
k + 1

(
2k
k

)
xk.
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15 Exercises

1. Given that 1
1− ax =

∞∑
n=0

anxn, convert the following into summation notation (in terms

of xn rather than xn+k)

a) 1
1− x + 1

1 + x

b) x3

1 + 2x
c)
∫ x

0

1
1− t dt = log

( 1
1− x

)
(hint: take the antiderivative/integral term by term)

d) 3
2− x (hint: convert to a

1− bx)

e) 1 + x

1− x3 (hint: split the fraction into two fractions)

� Hints

a) Start with
1

1− y =
∞∑

n=0
yn

where maybe y = x3 and we get x3n or y = −x and we get (−x)n.

b) If we multiply by x3 and get
∑
anxn+3 then subtract 3 from n everywhere to get∑

an−3xn. For the bottom of the summation, we would change from n = 0 to
n− 3 = 0 or n = 3.

c) If we integrate
∑
xn term by term, we get

∑
xn+1n+ 1.

d) Convert to 3/2
1− x/2 .

e) You can write your answer as
∑
anx

n where an = . . . (formula will depend on if
n = 3k, 3k + 1, 3k + 2).

2. Convert each sequence to a closed form generating function. Use the most obvious choice
of form for the general term of the sequence. Sequences start at n = 0.

a) 2, 2, 2, 2, 2, 2, . . .
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b) 0, 1, 0, 1, 0, 1, . . .
c) 1, 0, 1, 0, 1, 0, . . .
d) 0, 1, 2, 3, 4, 5, . . . (hint: factor out an x from

∑
nxn so that the terms are d

dxx
n,

then move the derivative operator outside the summation [but after the x that was
factored out])

e) 1, 3, 5, 7, 9, 11, . . . (hint: use part d)

� Hint

a) Write it first as
∑

2xn and factor out the 2.
b) Write it first as x+ x3 + x5 + . . .
c) Write it first as 1 + x2 + x4 + . . .

d) d

dx

1
1− x = 1

(1− x)2 =
∑

nxn−1

3. Using the formulas from section Section 13.4, find

a)
∞∑

n=0

(
n+ 2

2

)
xn

b)
∞∑

n=5

(
n− 1

4

)
xn

� Hint

a) Can be plugged into the formula directly
b) Look for the formula with n− 1 and then figure out how to choose the right k.

4. Find the indicated coefficients.

a) [x10] 1
1 + 2x

b) [x20] 1
(1− x)7

c) [x20] x3

(1− x)10

d) [x85] 2x5

1− 3x5 (hint: if the sum is
∑

(∗)x5n+5 then the coefficient of x85 occurs where
5n+ 5 = 85)

� Hint

a) Use the formula
∑

(−2)nxn and take the coefficient of x10

b) Use the formula from Section 13.4.
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c) First use the shift formula from Theorem 14.1 to write it as [x17] 1
(1− x)10 .

d) The sum is
∑

2 · 3nx5n+5

5. Write down a generating function for the number of ways to make change for n dollars
using 1, 5 and 10 dollar bills. (Hint: if we are receiving multiples of $5 bills, then the
generating function should be x0 + x5 + x10 + · · · where the weight function of a bill is
its dollar value.)

� Hint

If the options for $5 bills are 0, 1, 2, . . . then we have 1 + x5 + x10 + x15 + . . . where the
coefficient gives the number of choices (only 1 way to have k bills of the same type) and
the exponent gives the weight or how much it contributes. You should get geometric
series for each bill value.

6. Repeat the previous problem but now suppose we are only allowed to give out a maximum
of one $5 bill.

� Hint

Similar to problem 5. but now there are only 0 or 1 choices for the $5 bill. So 1 + x5 is
the generating function for that denomination.

Solutions

1. a)
∞∑

n=0
((−1)n + 1)xn

b)
∞∑

n=3
(−2)n−3xn

c)
∞∑

n=1

xn

n

d)
∞∑

n=0

3
2n+1x

n

e)
∞∑

n=0
anx

n where an = 0 if n = 3k + 2 and an = 1 otherwise (so the sequence

1, 1, 0, 1, 1, 0, 1, 1, 0, . . .).
2. a) 2

1− x
b) x

1− x2

c) 1
1− x2
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d) x

(1− x)2

e)
∑

(2n+ 1)xn = 2
∑

nxn +
∑

xn = 2
(1− x)2 + 1

1− x .

3. a) 1
(1− x)3

b) x5

(1− x)5

4. a) (−2)10

b)
(

26
6

)

c)
(

26
9

)
d) 2 · 316

5. 1
(1− x)(1− x5)(1− x10)

6. 1 + x5

(1− x)(1− x10)
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Part IV

Regular Languages
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16 Regular Languages

At this point we’ve seen numerous examples where a language is composed of a sequence of
blocks.

• A binary string is a sequence of 0s and 1s
• A Dyck path is a sequence of smaller paths, shifted properly
• A tiling of a 2 × n grid using dominoes is a sequence of vertical dominoes or pairs of

horizontal dominoes
• Equivalently: we looked at sequences of 1s and 2s which sum to n; both give the Fibonacci

numbers
• Binary strings with no 11—also counted by the Fibonacci numbers—can be broken into

sequences of blocks although the blocks are more complex than the previous example

16.1 Kleene Star

Let L be a language that does not contain the empty string (for reasons of unique representation).
The language which repeats L in a sequence is called the Kleene star of L, denoted L∗. An
element of L∗ is some finite sequence

u1u2 · · ·uk, where ui ∈ L.

Another name for such a sequence of length k is Lk (concatenating k strings from L). Thus,

L∗ = L0 ∪ L1 ∪ L2 ∪ L3 ∪ · · · .

It’s also common notation to write these unions with a + sign to mean “or” (with a heavy
implication that we want this to be disjoint). Also note that L0 = {ε} because concatenating 0
strings yields an empty string. So we have

L∗ = ε+ L+ L2 + L3 + · · · .

16.1.1 Kleene Plus

A related construction considers only the sequences of positive length. This is called the Kleene
plus operator and it is defined by

L+ = L+ L2 + L3 + · · · .
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16.2 Relation to Generating Functions

Theorem 11.1 and Theorem 12.1 imply the following theorem.

Theorem 16.1 (Kleene star and plus). Provided the sets L0, L1, L2, . . . are disjoint,

ΦL∗ = ΦL0 + ΦL1 + ΦL2 + ΦL3 + · · ·
= Φ0

L + Φ1
L + Φ2

L + Φ3
L + · · ·

= 1
1− ΦL

.

Similarly,

ΦL+ = Φ1
L + Φ2

L + Φ3
L + · · ·

= ΦL

1− ΦL
.

16.3 Examples

Consider our sequences of 1s and 2s which gave us the Fibonacci sequence. Here, unlike many
previous examples, we don’t want to weight sequences by length but rather by sum (we’re
looking for sequences whose sum is n not whose length is n). So let f denote the sum of a
sequence, e.g. f(122) = 1 + 2 + 2 = 5.

Let L = {1, 2}. Then L∗ represents all sequences of 1s and 2s. By theorem Theorem 16.1, we
have

ΦL∗ = 1
1− ΦL

= 1
1− (xf(1) + xf(2))

= 1
1− x− x2 . (16.1)

We know that the number of these sequences which sum to n is counted by the Fibonacci
sequence, so like we stated Section 11.3.1, we have

taylor(1/(1 - x - xˆ2), x, 0, 10)

89x10 + 55x9 + 34x8 + 21x7 + 13x6 + 8x5 + 5x4 + 3x3 + 2x2 + x+ 1
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16.3.1 Avoiding ‘11’

If we want to avoid 11 we need to make sure that everyone 1 has at least one 0 next to it. We
can do this with the language 0+1 which guarantees a zero on the left. Taking sequences of
these, we get (0+1)∗.

We’re getting close to the description. We also need to allow a potential initial 1 in case because
that’s the place in the string which might have 0s only on the right. So (ε+ 1)(0+1)∗. Lastly,
we can have as many zeros as we want after the last 1 so L = (ε+ 1)(0+1)∗0∗.

Here we’re weighting by length again, so

• Φε+1 = x0 + x1

• Φ0+1 = x
1−x · x = x2

1−x

• Φ(0+1)∗ = 1
1− x2

1−x

• Φ0∗ = 1
1−x

Putting that all together, we have

ΦL = (1 + x) · 1
1− x2

1−x

· 1
1− x = 1 + x

1− x− x2 .

This is similar to Equation 16.1 but the numerator shifts the sequence over a step:

taylor((1 + x)/(1 - x - xˆ2), x, 0, 10)

144x10 + 89x9 + 55x8 + 34x7 + 21x6 + 13x5 + 8x4 + 5x3 + 3x2 + 2x+ 1

16.4 Even number of 1s

Heuristically, half of all binary strings should have an even number of 1s and half should have
an odd number. We’ll prove this using generating functions.

For a start, the language of binary strings can be written as (0 + 1)∗ (sequences of 0s or 1s). If
we want to guarantee that every 1 is partnered with a second 1 later on, then we can modify
this to L = (0 + 10∗1)∗. Now we compute

Φ10∗1 = x · 1
1− x · x = x2

1− x.
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So therefore,

ΦL = 1
1− (x+ x2

1−x)

= 1− x
(1− x)− x(1− x)− x2

= 1− x
1− 2x

= 1
1− 2x −

x

1− 2x

=
∞∑

n=0
2nxn −

∞∑
n=0

2nxn+1

=
∞∑

n=0
2nxn −

∞∑
n=1

2n−1xn.

And that means that the number of such strings is{
2n − 2n−1 = 2n−1 if n ≥ 1
1 if n = 0

.

16.5 Regular Languages

We describe regular languages inductively:

• a finite language is regular
• if L,L′ are regular then so is L+ L′

• if L,L′ are regular then so is LL′

• if L,L′ are regular then so are L∗ and L+

That is, a regular language is everything you can create out of a finite description using unions,
concatenations, Kleene stars and pluses, and letters from the alphabet.

Such a description using these operations is known as a regular expression. This concept is
closely related to regular expressions in computer programming although computer programming
includes many more operations such as the ? operator where L? = ε+ L.

ñ Note

Some regular expression operators in computer programming allow one to create languages
which are not regular. For instance, back-references allow one to ask whether a previous
part of the string has been repeated. So computer programming regular expressions
exceeds what formal language regular expressions can describe. See Wikipedia for more
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17 Finite Automata

As we saw in Section 16.3, it can be a bit tricky to come up with a regular expression for a
language. Often it’s easier to draw what is called a finite state automaton (FSA) instead.
For instance, for the no 11s language, we make states representing the last character seen as
we move through the string and if the last character was a 1 and we see a second 1, we know
the string should be thrown out.

Figure 17.1: The Fibonacci automaton

17.1 Interpreting a FSA

The way to use a FSA is to input a string one digit at a time, let’s say from left to right. So if
we take the string 010011 and input it into the automaton in Figure 17.1, we start in state 0.
The arrow

Figure 17.2: Start arrow

indicates which state to start in.

Then we read the first character in our string, which is 0 and this tells us to follow the edge
labeled 0 from our current state, which puts us back in state 0.

Next we read a 1 and this tells us to follow the edge labeled 1 and puts us in state 1. Then
another 0 puts us back in state 0. Then state 0 again. Then state 1.
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With the last 1, we try to follow an edge labeled 1 out of state 1, but there is no such edge. So
at this point we fail and that means the string 010011 is rejected by the automaton.

17.2 A FSA for even ’1’s

To create this automaton, we need one state to represent an even number of 1s and one state
to represent an odd number of 1s. To distinguish between success states and failure states, we
will use a thick border on the success states.

Figure 17.3: Automaton for an even number of 1s

These success or failure states are used at the end of reading a string. If we finish in a success
state, the string is good. If we finish in a failure state, the string is bad.

17.3 State Elimination

Let’s have a look at how to turn a FSA into a regular expression. To do this, we will modify
our automata step by step, marking each path by what regular expression goes through each
state.

17.3.1 One in, one out

For example, a state like

Figure 17.4: Pre-state elimination
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Can be replaced by

Figure 17.5: Post-state elimination

In order to enter state S we need to see an a, then we can use b as many times as we want,
then we need to see a c to leave.

17.3.2 Parallel edges

Given two parallel edges, we can combine them using + meaning “or”.

Figure 17.6: Pre-state elimination for parallel edges

Figure 17.7: Post-state elimination for parallel edges

This says to get from the first state to the second, we can take either a or b.

17.3.3 Multiple ins or outs

Suppose we have multiple in-edges or out-edges on a state. We can replace the state with a
path from each input to each output and record the expression for that path according to
Section 17.3.1.

17.3.4 Trinary Example

Consider the language of trinary strings containing at least one 1 and one 2. Let’s setup states
recording whether we’ve yet seen a 1, a 2 or both.

In order to eliminate every state, we make sure to have a starting and ending node that we can
get an answer going from start to finish. There is only one accepting state here, “012”, which
can go to the ending node whenever we finish.
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Figure 17.8: Pre-state elimination for multiple edges

Figure 17.9: Pre-state elimination for multiple edges

Figure 17.10: FSA for trinary strings with at least one 1 and one 2
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Next, we eliminate states “01” and “02” using Section 17.3.1.

Figure 17.11: FSA for trinary strings with at least one 1 and one 2, begin state elimination

Then we use Section 17.3.2 and finish off with Section 17.3.1 to eliminate the remaining states.

Figure 17.12: FSA for trinary strings with at least one 1 and one 2, finish state elimination

This gives us the regular expression

0∗[1(0 + 1)∗2 + 2(0 + 2)∗1](0 + 1 + 2)∗.

17.4 Fibonacci Example

Consider the language of binary strings with no “11.” We can make an automata with three
states: a good state where we can take anything, a state representing that we’ve last seen a “1”
and one which represents that we’ve seen two “1”s in a row.

Figure 17.13: FSA for binary strings with no 11

As before, we have a start and end state represented by just circles.
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Figure 17.14: FSA for binary strings with no 11, no sink state

So first, we can eliminate the state for “11” since going there will never lead to a valid string.

The easiest state to eliminate here is state “1” because it has the fewest number of arrows and
no loops. There is one path into state “1” and two out. So following Section 17.3.3, we replace
these with the path 1ε = 1 from state “0” to the end and with the path 10 from 0 back to
itself.

Figure 17.15: FSA for binary strings with no 11, eliminate state 1

We now have some parallel loops and parallel edges, which we can add together to get a loop
of 0 + 10 and an edge of ε+ 1. So the regular expression we come to is

(0 + 10)∗(ε+ 1).
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18 Putting Everything Together

We’ve done some examples where we take a description and create a finite state automaton.
We’ve done state elimination to create regular expressions. So let’s look one last time at how
to turn these regular expressions into formulae.

18.1 Trinary Example

In Section 17.3.4, we had the regular expression

0∗[1(0 + 1)∗2 + 2(0 + 2)∗1](0 + 1 + 2)∗.

Now we could break this into sublanguages like L0 = {0} and ΦL0 = xf(0) = x1 but we can
streamline this a bit.

1. Take your regular expression.
2. Replace each character like 0, 1, 2 with xf(0), xf(1), xf(2). If we’re weighting by length

these should all just be x.
3. Replace A∗ by 1

1−A .

Let’s illustrate:

0∗[1(0 + 1)∗2 + 2(0 + 2)∗1](0 + 1 + 2)∗

7→ x∗[x(x+ x)∗x+ x(x+ x)∗x](x+ x+ x)∗

= x∗[2x2(2x)∗](3x)∗

= 1
1− x

2x2

1− 2x
1

1− 3x

= 2x2

(1− x)(1− 2x)(1− 3x) .
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18.1.1 Getting a formula

On it’s face, it’s hard to tell what the taylor series is for this function. So we first ask Sage to
give us a partial fraction decomposition.

%display latex
A = 2xˆ2 / ((1 - x)*(1 - 2x)*(1 - 3x))
A.partial_fraction()

− 1
3x− 1 + 2

2x− 1 −
1

x− 1
Sage typically puts the x’s first but it’s more useful to us to write this as

1
1− 3x −

2
1− 2x + 1

1− x.

We use the important identity 1
1−ax =

∑
anxn to convert this to

∞∑
n=0

3nxn − 2
∞∑

n=0
2nxn +

∞∑
n=0

xn =
∞∑

n=0
(3n − 2 · 2n + 1)xn.

Conclusion: there are 3n − 2 · 2n + 1 trinary strings of length n with at least one 1 and one 2.

ñ Note 2

We can also obtain this answer by Inclusion/Exclusion. Let X denote the set of all trinary
strings of length n. Let A be strings with no 1 and let B be strings with no 2. Then
|X| = 3n and |A| = |B| = 2n since each represents strings with two choices of character.
We want |X|− |A∪B| = |X|− |A|− |B|+ |A∩B| using the formula we had in Section 2.4.
So 3n − 2n − 2n + 1 which matches what we have using generating functions.

We’re beginning to see how generating functions tie together our material on binomial coefficients,
strings, inclusion/exclusion and also recurrence relations.

18.2 Fibonacci Example

At the end of Section 17.4, we had the regular expression (0 + 10)∗(ε + 1). We repeat our
method to turn this into a generating function. First, we should point out that ε will become
xf(ε) = x0 = 1. So

(x+ x2)∗(1 + x) = 1 + x

1− x− x2 .
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Partial fractions don’t help us out here. At least. . . not easily.

On the other hand, we know that the Fibonacci numbers satisfy the recurrence fn = fn−1 +fn−2.
To make the connection clearer, let us write this as

fn − fn−1 − fn−2.

18.3 More Examples

Consider the sequence generated by a0 = 0, a1 = 0, a2 = 1 and an + 4an−1 − 2an−2 + 5an−3 for
n ≥ 3.

We can compute a generating function
∑
anx

n in Sage using the following commands.

ñ Note

Per the Sage documentation, the coefficients are given in ascending order (from n− 3 to
n− 2 to n− 1):

an+3 = −5an + 2an+1 − 4an+2.

C = CFiniteSequences(ZZ) # sequences over the integers
C.from_recurrence([-5, 2, -4], [0, 0, 1]).ogf()

x2

5x3 − 2x2 + 4x+ 1
The numerator is hard to predict as it depends on the initial values as well as the recurrence.
But pay attention to that denominator:

1 + 4x− 2x2 + 5x3

These coefficients match our recurrence!

18.4 General Result

Suppose a Taylor series
∑
anx

n can be written as a rational function P (x)/Q(x) where:

1. degP < degQ
2. Q(x) = c0 + c1x+ c2x

2 + · · ·+ ckx
k (degree k)
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Then the coefficients an satisfy the recurrence relation

c0an + c1an−1 + c2an−2 + · · ·+ ckan−k = 0, for n ≥ k

(And the reverse holds as well!)

ñ Note

The condition that degP < degQ isn’t crucial to this. It takes care of a few things. First,
if degP ≥ degQ we could do long division to simplify.
Second, if we have something like x/(1−x) = −1 + 1/(1−x), then the recurrence relation
we get from the denominator is an = an−1 but if we write down this Taylor series, the
coefficients are 0, 1, 1, 1, 1, . . .. So the recurrence relation an = an−1 only holds if n ≥ 2.
The big takeaway here is: making degP ≥ degQ alters the initial terms and the recurrence
relation takes longer to kick in.

Proof. Let A =
∑
anx

n = P (x)/Q(x). Multiplying both sides by Q(x) we should find that
AQ = P (a polynomial). So

AQ = (c0 + c1x+ · · ·+ ckx
k)
∑

anx
n

= c0
∑

anx
n + c1

∑
anx

n+1 + · · ·+ ck

∑
anx

n+k

= c0
∑

anx
n + c1

∑
an−1x

n + · · ·+ ck

∑
an−kx

n.

Now this is supposed to be a polynomial. And it is, if and only if the coefficients are 0 for n
bigger than degP and in particular if n ≥ k = degQ. So for n ≥ k, we have

c0an + c1an−1 + · · ·+ ckan−k.

And the steps here are reversible: if we satisfy this recurrence then AQ is a polynomial of
degree less than k.

18.5 Epilogue

When our generating function comes apart nicely into partial fractions, we can use the identity
1

1−ax =
∑
anxn to extract the coefficient of an. More generally, we can handle generating

functions like 1/(1− ax)k using the formulas of Section 13.4.

For something like x/(1− x− x2), partial fractions can be used to obtain

x

1− x− x2 = 1√
5

( 1
1− ϕx −

1
1− ψx

)
; where ϕ, ψ = 1±

√
5

2 .
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With the resulting formula
fn = 1√

5
(ϕn − ψn).

Known as Binet’s formula which we saw a version of in Section 11.3.1. This formula is super
cool but computationally leaves a lot to be desired as multiplying large decimal numbers
together can be quite expensive.

The fastest way to compute the Fibonacci sequence comes right from the recurrence definition.
With a little bit of linear algebra, we can turn that linear recurrence into(

0 1
1 1

)(
fn

fn+1

)
=
(

0fn + fn+1
fn + fn+1

)
=
(
fn+1
fn+2

)
.

So the Fibonacci numbers and in fact, all of these linear recurrence relations, can be computed
via matrix multiplication. This has the immediate advantage that we can use the identity
A2n = (An)2 to cut down our number of steps quite significantly. I.e. we have an algorithm where
if n has k bits in binary, then the algorithm takes O(k) = O(log2 n) matrix multiplications.

� Tip

The Sage commands for this look like

C = CFiniteSequences(ZZ)
Fib = C.from_recurrence([1, 1], [0, 1])
Fib.closed_form()√

1
5

(1
2
√

5 + 1
2

)n

−
√

1
5

(
−1

2
√

5 + 1
2

)n
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19 Transfer Matrix Method

Let D be a directed graph on the vertices 1, . . . , n. The adjacency matrix of D is the matrix
A = A(D) where

Aij =
{

1 if i→ j is a directed edge,
0 otherwise

These adjacency matrices allow for loop edges i → i and can be made to allow for parallel
edges if we let Aij be the number of parallel edges from i→ j.

19.1 Example

Consider the graph

Figure 19.1: A digraph on 1,2,3 with edges 12, 13, 22, 31, 32

The adjacency matrix of this digraph is

A =

1 2 3
1
2
3

0 1 1
0 1 0
1 1 0

 (19.1)

For instance, row 1 says that vertex 1 has edges 1→ 2 and 1→ 3.
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19.2 Matrix Multiplication

In linear algebra, we define the product of two matrices A and B by

(AB)ij =
∑

t

AitBtj .

Visually, this means we take the i-th row of A and take the dot product with the j-th row of
B. For instance, if A is the adjacency matrix in Equation 19.1, then

A12 =
(
0 1 1

)
·

1
1
1

 = 0 · 1 + 1 · 1 + 1 · 1 = 2.

This product has a combinatorial meaning:

(A2)ij =
∑

t

AitAtj =
∑

t

{
1 if i→ t→ j are edges,
0 else.

In other words: A2 gives the number of walks of length 2.

Theorem 19.1. If A is the adjacency matrix for some digraph D, then (An)ij is the number
of walks of length n from i to j.

Proof. We prove this by induction. First, the base case: if n = 1 then (A1)ij = Aij is by
definition the number of walks (single edges) from i to j.

For the inductive step, we assume that (for every i and j) (An−1)ij counts the number of walks
from i to j of length n− 1. Then

(An)ij = (An−1A)ij =
∑

t

(An−1)itAtj .

Here, the first factor, (An−1)it counts the number of walks from i to t of length n− 1 and Atj

is the number of edges from t to j. So the whole term (An−1)itAtj counts the number of walks
from i to t to j. So this is every walk of length n from i to j.

19.2.1 Example

For the digraph in Figure 19.1, how many walks are there of length 3 from vertex 1 to vertex
2? We can do 1, 2, 2, 2; or 1, 3, 2, 2; or 1, 3, 1, 2. So there are 3 walks of length 3. Therefore, we
expect that A3 will have a 3 in row 1, column 2. Let’s use SageMath to check this.
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%display latex
A = Matrix([[0, 1, 1], [0, 1, 0], [1, 1, 0]])
Aˆ3

 0 3 1
0 1 0
1 3 0


Examples of other things this matrix tells us: there are 0 walks from 1 to 1 of length 3; there
is only 1 walk of length 3 from 1 to 3, namely 1, 3, 1, 3.

19.3 Generating Functions

Recall that when we started with generating functions, a monomial like axn meant “a objects
of length or size n.” So if we do Anxn then the entries will represent “(An)ij walks of length n.”
Then the generating function for this is

M = A0x0 +A1x1 +A2x2 +A3x3 + · · ·
= I +Ax+A2x2 +A3x3 + · · ·
= (I −Ax)−1

Where we use a similar formula as our geometric series, 1
1−ax , except a is now a matrix.

For the digraph in Figure 19.1, this generating function is

M = (identity_matrix(3) - A*x)ˆ-1
M.simplify_rational()

 −
1

x2−1
x

x2−2 x+1 − x
x2−1

0 − 1
x−1 0

− x
x2−1

x
x2−2 x+1 − 1

x2−1


Theorem 19.2. Each entry Mij of this matrix is the generating function for the number of
walks from vertex i to vertex j.

For instance, the generating function for walks from vertex 1 to vertex 3 is
x

1− x2 = x+ x3 + x5 + x7 + · · · .

This agrees with what we can see from the diagram: there is exactly one walk of length n for
any odd number n and none of even length.
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Of course, the true utility of this is when we can’t do the calculation in our heads of the number
of walks. For instance, the number of walks from vertex 1 to vertex 2 of length n is given by
the generating function

x

1− 2x+ x2 = x

(1− x)2 =
∞∑

n=0
nxn

(using the formula from Section 13.4). So there are n walks of length n.

19.4 Fibonacci

We can use this method to simplify a lot of the work we had to do with state elimination. Have
a look at our Fibonacci automaton again, simplified down to 2 states.

Figure 19.2: FSA for binary strings with no 11, no sink state

A valid string is a walk from vertex 0 to either vertex 0 or vertex 1 (depending on the last bit
of the string). So we want M00 +M01 for the number of walks from vertex 0 to vertex 0 plus
from vertex 0 to vertex 1.

Here’s how to accomplish that in SageMath. We start with the adjacency matrix

A =
(

1 1
1 0

)

Then compute M = (I −A)−1

A = Matrix([[1, 1], [1, 0]])
I = identity_matrix(2)
M = (I - A*x)ˆ-1
OGF = M[0][0] + M[0][1]
OGF.simplify_rational()

− x+ 1
x2 + x− 1

And this matches our answer in Section 18.2.
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19.5 Recurrence Relations

With all this matrix algebra, the results we get can get pretty gnarly. Sometimes it’s enough to
get a recurrence relation to describe our answer. By Section 18.4, we know that the recurrence
is given by the denominator.

We will use now a theorem from linear algebra. ::: {#thm-matrix-inverse} The inverse of a
matrix A is given by

A−1 = 1
detA Adj(A)

where the adjugate matrix Adj(A) has entries given by determinants of A deleting one row and
one column. :::

What’s important to us here is that the denominator is detA. So the denominator of our
generating functions is

det(I −Ax)

This is related to the characteristic polynomial but with the coefficients reversed.

19.5.1 Example

For our Fibonacci FSA in Figure 19.2, the denominator is

det(I - A*x)

−x2 − x+ 1

This tells us the recurrence relation is

1 −1x −1x2

↓ ↓ ↓
an −an−1 −an−2 = 0

ñ Note

In Section 19.3, we saw that some of the denominators were 1− x2 = (1− x)(1 + x) and
some were 1−x and some were (1−x)2. The denominator we calculate using det(I −Ax)
is (1− x)2(1 + x) = 1− x− x2 + x3 leading to the recurrence an − an−1 − an−2 + an−3.
All of the quantities will satisfy the longer recurrence but they also individually satisfy a
shorter recurrence which may be different from their siblings.
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20 Exercises

1. For each of the automata below, eliminate the state “E” by:

a) first identify all the arrows pointing into “E” and out of “E”
b) replace each path A

u−→ E
v−→ B by A ul∗v−−→ B where l is the loop at “E”.

Figure 20.1: FSA for exercise 1

Figure 20.2: FSA for exercise 1

2. Write the described language using +, · (concatenation) and ∗ (Kleene star or plus)

a) {ε, 0, 1, 11, 111, 1111, · · · }
b) Strings of 0s with at least two 0s
c) Strings of 0s with an even number of 0s
d) Strings of 0s with an odd number of 0s
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Figure 20.3: FSA for exercise 1

� Hint

a) How does this compare to {ε, 1, 11, 111, 1111, . . . } = 1∗?
b) Set the two 0s aside first (compare to a+ = aa∗)
c) Think in terms of repeating 00
d) Combine ideas from b. and c.

3. Consider the language L = 0∗(11)∗.

a) List all words in L of length ≤ 6.
b) Let an be the number of words in L of length n. Using part a, guess a formula for

an (which may depend on whether n is even or odd).
c) Can you prove your formula?

� Hint

In words: L describes languages with some number of 0s followed by an even number of
1s. So for instance, if n = 9, the possible number of 1s is 0, 2, 4, 6, 8 and there would be 5
possible strings. The formula should look something like n/2 or (n+ 1)/2.

4. Consider a tiling problem where we tile a 2× n grid using horizontal or vertical dominos
(1×2 or 2×1) or a 2×2 square. Let Σ = {V,H, S} where V represents a vertical domino,
H represents a horizontal domino, and S represents a square. A tiling can be described
by the language L = Σ∗.

a) Let f be the weight function describing the width. So f(V ) = 1, f(H) = f(S) = 2.
What is the generating function for Σ?

b) What is the generating function for L = Σ∗?
c) Using SageMath’s Taylor series method, compute the number of such tilings of a

2× 10 grid. Note: you have to write 2*x rather than 2x in SageMath.
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d) Using our techniques from recursion, what is a recursive formula for the number of
tilings tn? Compare this to the denominator of your OGF like in Section 18.4.

� Hint

The generating function of Σ is

ΦΣ =
∑
w∈Σ

xf(w) = xf(V ) + xf(H) + xf(S).

For b. use Theorem 16.1.
For d. use the fact that a tiling of length n is either: * a tiling of length n− 1 followed
by a vertical domino, * a tiling of length n − 2 followed by either a pair of horizontal
dominoes or a square (so 2 options).

5. Draw a finite automata for:

a) the language 0∗(11)∗

b) the language (0 + 11)∗

The automata in these notes were drawn using the Mermaid Javascript library. You may wish
to copy the following code to mermaid.live and modify it to create the FSA you need.

stateDiagram-v2
direction LR
classDef accept stroke-width:5px
[*] --> 0
0 --> 0 : 0
0 --> 1 : 1
1 --> 11 : 1
11 --> 11 : 1

class 0, 11 accept

� Hint

The FSA for part a should require only slight modification of the sample Mermaid diagram.
Likewise, part b should require only slight modification from part a.

6. Take the FSA from the previous question and perform state elimination to check if you
recover the regular expression you started with. Remember to add in a termination state
before you start eliminating.
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� Hint

Use the ab∗c formula described in Section 17.3.1 on each path A→ S → B to eliminate
S.

7. In Example 8.18 of Keller and Trotter’s book, they show using exponential generating
functions that the number of ternary strings with an even number of 0s is (3n + 1)/2. In
this exercise, we will get this answer using ordinary generating functions.

a) Draw a FSA for this language (you can do it in two states, not including the start
and end).

b) Perform state elimination to obtain a regular expression.
c) Convert that regular expression to an OGF.
d) Using SageMath, find a partial fraction decomposition for the OGF.
e) Verify that the Taylor series is

∑ 3n+1
2 xn.

� Hint

a) The start state will represent an even number of 0s seen so far and another state
will represent an odd number.

b) Eliminate the odd state using the elimination rule: in(loop)*out.
c) Replace 0, 1, 2 by x1 since each of those characters has length 1.
d) Don’t forget to use 2*x rather than 2x.
e) Use the formula a

1−r =
∑
arn.

Solutions

1.

2. a) 0 + 1∗

b) 000∗ or 00+

c) (00)∗

d) 0(00)∗
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