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. . . allowing a little more time for things to go wrong might in fact have been a better idea.

I’d just been completely certain that if they’d gone more wrong than that, we’d all be dead

anyway.

Naomi Novik, A Deadly Education
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SUMMARY

This thesis addresses questions related to divisors and multiplicities as analyzed through

tropicalization or signs. It begins with a introduction to the subject matter written for a

non-specialist. The next chapter concerns fully-faithful tropicalization in low dimension.

The last two chapters concern questions about Baker-Lorscheid multiplicities in one and

several variables respectively.

With fully-faithful tropicalization, the goal was to construct a tropicalization map from

a curve to a 3-dimensional toric variety. The constraints are that we need the map to be

injective and we need the gcd of all the slopes to be 1, so that we get an isometry with

respect to the lattice length metric. We also have some results about smooth, fully-faithful

tropicalizations of a genus g curve in a toric variety of a dimension 2g + 2 (three more than

the lower bound imposed by the maximal vertex degree).

For multiplicities, I present a broad generalization of the work of Baker and Lorscheid

for univariate multiplicities over hyperfields. In Baker and Lorscheid’s work, they show how

Descartes’s Rule of Signs and Newton’s Polygon Rule may be obtained from factorizing

polynomials in the arithmetics of signs and tropical numbers respectively. We will see in

chapter 3, a broad generalization of their multiplicity operator to a class of arithmetics,

which I call “whole-idylls.” In particular, we have a way of extending multiplicity rules

by extending the arithmetic by a valuation. An important corollary is that for so-called

“stringent” hyperfields, we have a degree bound: the sum of multiplicities for a polynomial

is bounded by its degree.

The last chapter contains my work with Andreas Gross on multivariate hyperfield multi-

plicities. We give particular attention to the hyperfield of signs and the so-far-unresolved

Multivariate Descartes Question. We define several multiplicity operators for linear factors

of polynomials and apply them to systems of equations. We recover the lower bound of

Itenberg-Roy on any potential upper bound for roots with a given sign pattern.

xvi



CHAPTER 1

INTRODUCTION

A smooth, genus 1 curve is called an elliptic curve and the theory of such curves is extensive,

having connections to Diophantine equations, modular forms, cryptography and more.

A genus 1 graph, on the other hand, is simpler: consisting of a unique cycle with trees

branching off. On their face, these two worlds seem quite disparate, but there is in fact a

wardrobe connecting them, known as tropicalization.

Figure 1.1: A genus 1 graph.

Consider the field Qp of p-adic numbers. Elements of Qp are expressed as Laurent

series in p, which take the form z =
∑

n≥N anp
n for some N ∈ Z and an ∈ {0, . . . , p− 1}.

Given an element z, we define the function vp(z) = min{n : an ̸= 0} ∈ Z and call it

the p-adic valuation, an instance of a non-Archimedean valuation. If z ∈ Q ⊂ Qp, then

vp(z) = k if we can write z = pk a
b

with p ∤ ab. The valuation vp (more generally: every

non-Archimedean valuation) satisfies the following properties:

• vp(0) = +∞ (by convention),

• vp(wz) = vp(w) + vp(z),

• vp(w + z) ≥ min{vp(w), vp(z)} with equality if vp(w) ̸= vp(z).

1



This last property implies that |z|p := p−vp(z) satisfies the (ultra)triangle inequality |w+z|p ≤

max{|w|p, |z|p} ≤ |w|p + |z|p. We call this a non-Archimedean absolute value.

Given a curve X ⊂ (Q∗
p)

n, we can consider the image vp(X(Qp)) ⊂ Qn and then take

the Euclidean closure to obtain a set in Rn called its tropicalization, denoted

Trop(X) = {(vp(x1), . . . , vp(xn)) : (x1, . . . , xn) ∈ X(Qp)}. (1.1)

Example 1.0.1. Take the curve defined by x+ y = 1. The properties above imply that the

minimum of vp(x), vp(y), vp(−1) = 0 occurs at least twice because if the minimum were

unique then vp(x + y − 1) = min{vp(x), vp(y), vp(−1)} ≠ vp(0) implies x + y − 1 ̸= 0.

The set of points in R2 where the minimum of x, y, 0 occurs at least twice is called a tropical

line (Figure 1.2). ♢

y = 0 ≤ x

x = 0 ≤ y

x = y ≤ 0

Figure 1.2: The tropical line Trop(V (x+ y = 1)).

Given a complicated polynomial, such as

f(x, y) = p3 + px+ py + px2 + xy + py2 + p3x3 + px2y + pxy2 + p3y3,

it is harder to use (1.1) to draw the tropicalization. Fortunately, there is a trick! First, plot

the points (i, j) for (i, j) ∈ supp(f) and imagine lifting them to a height of vp(ci,j) ∈ R3,

where ci,j is the coefficient of xiyj . Then, imagine wrapping those points from the bottom in

plastic. Keep track of the edges and faces created in this process and use those to construct

a subdivision of the Newton polygon conv(supp(f)) ⊂ R2. This subdivision is called the

Newton complex, denoted Newt(f). The tropicalization, Trop(V (f)), is dual to Newt(f),

2



after rotating 180◦. This is a tropical elliptic curve (Figure 1.3). The vertices of the tropical

curve correspond to maximal cells in the Newton complex. To get the coordinates of a

vertex, the quantities vp(ci,j) + ix+ jy should be equal (and minimal) for all (i, j) in that

maximal cell.

Figure 1.3: Extended Newton polytope, Newton complex and tropicalization of f .

Tropical curves also have a balancing condition. For each cell σ in the Newton complex,

consider the minimal integer normal vector ve to each edge e of σ. Give this a weight we

which is the index of the minimal integer vector in e (the number of times e is a multiple of

its minimal integer vector). Then
∑

e∈σ weve = 0, which we can see because if we stack the

vectors weve from tip to tail, we get a rotation of σ, which is a closed loop (Figure 1.4).

4
2

2

Figure 1.4: The tropical balancing condition, weights written as numbers.
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1.1 Faithful and fully-faithful tropicalization

A metric graph is a graph where every edge has a length. In the context of tropicalization,

edges will have infinite length if and only if they connect to a leaf vertex. This is an

abstraction of the tropical curves as pictured in Figure 1.3 where the lengths are given by

the lattice lengths (e.g. (4, 2) has a lattice length of 2 since it is twice as long as the minimal

integer vector (2, 1)). In the tropical picture, these lattice lengths are scaled by the weights

described by Figure 1.4. For instance, if (2x, x) is a point on an edge in direction (2, 1) from

the origin, and that edge has a weight of 3, then (2x, x) is distance 3x from the origin. If we

forget the exact coordinates and just remember lengths and distances, we get a metric graph,

which we call an abstract tropical curve.

Fx,Fy−−−→

Figure 1.5: Tropicalization of a metric graph.

Notice that tropical curves, as defined in (1.1) and pictured in Figure 1.3, can be obtained

from metric graphs using piecewise-linear coordinate functions (Figure 1.5). For curves

over Qp, these coordinate functions have integral slopes and have rational lengths in the

lattice length metric.

Baker and Rabinoff, in an application of their theory [BR15, Section 8], describe tropical-

ization maps which are isometries (tropical weights are all 1) on something called a skeleton.

They worked with a fixed skeleton, which is something obtained by taking an abstract
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tropical curve and contracting some leaf vertices. If this contraction is done recursively for

every leaf vertex, we obtain something called a minimal skeleton (in Figure 1.5 this would

be the circle/hexagon of the tropical curve).

A tropicalization is faithful on a skeleton Σ if all the tropical weights are 1, meaning the

lattice length between two points is the same as the metric length in the corresponding metric

graph. With their fixed skeleton Σ, they define three piecewise-linear coordinate functions

whose slopes everywhere have a GCD of 1 (so that there is never a common multiple in any

direction vector). They use their lifting theorem to construct three rational functions on the

original curve X (which give an embedding X → P3) such that the tropicalization of this

image is described on Σ, by the piecewise-linear coordinate functions.

Fx Fy Fz

Figure 1.6: Baker-Rabinoff coordinate functions along a fixed edge.

This is a nice application of lifting divisors but it was only a part of the tropical picture.

For the tropical curve to be balanced, it is necessary for there to be rays extending outwards

from the skeleton to oppose the change in slopes of the coordinate functions. Due to the

nature of their construction, the rays in the Baker-Rabinoff construction have a large tropical

weight and so the lattice length metric does not agree with the abstract metric graph on these

rays.

What Philipp Jell and I did (chapter 2), was to take a skeleton Σ again but now consider-

ing the rays needed for balancing, used slightly different coordinate functions so that when

we add in these extra rays to form the so-called extended skeleton, the whole tropical curve

is isometric to the extended skeleton. Meaning again, the slopes have GCD 1 everywhere so

that all the tropical weights are 1. We call these tropicalizations fully-faithful.
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1.1.1 Smooth tropicalizations

The combinatorial condition for a tropicalization to be smooth is that the primitive tangent

vectors at each point x span a saturated lattice of rank deg(x)− 1. A lattice L is saturated

if whenever d · v ∈ L and d ∈ Z, then v ∈ L. Thus, if the maximal vertex degree is D, we

need at least D − 1 dimensions to get a smooth tropicalization. In particular, among all

genus g curves which can have a maximal vertex degree of 2g, the minimum is 2g − 1. In

section 2.6, we construct a smooth tropicalization in D + 2 dimensions, so 3 more from the

theoretical smallest.

1.2 Berkovich analytic spaces and constructing tropicalizations

Let us now go over some of the component tools and techniques that go into “lifting divisors

from metric graphs to curves.” First, there is a second description of skeleta coming from

so-called “semistable models,” which we will now describe.

Suppose we have a curve X over a valued field like Qp. If the curve is defined by

equations in Zp, then X is the generic fibre of a scheme X → Spec(Zp) defined by those

same equations. The special fibre XFp can also give us information about X. For this, we

assume that X is smooth and proper. The scheme X is useful to our purposes if XFp is

reduced and the singularities are transverse intersections. We call X a semistable model.

If X is a semistable model, then the intersection graph of XFp is a metric graph with

vertices v1, . . . , vn corresponding to the irreducible components C1, . . . , Cn of XFp . We

connect vi and vj by an edge of length d if the intersection of Ci and Cj admits local

coordinates where the intersection is defined by xy = t with vp(t) = d. It can be shown that

the metric graph coming from these semistable models agrees (up to subdivision) with the

metric graphs coming from tropicalizations [BPR13].

To X , we associate an analytic space called the Berkovich space, Xan. This space is the

limit of all tropicalizations of a curve [Pay09] and describes all the skeleta/tropicalizations
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of X . In concrete terms, the Berkovich space can also be described as the space of pairs

(x, | · |) where x ∈ X and | · | is a seminorm on κ(x) extending the p-adic norm or whatever

non-Archimedean norm we have on our field. For the interested reader, Matt Baker has

written a longer introduction to Berkovich spaces [Bak08a].

ζ

0 ∈ A1

∞ ∈ P1

x ∈ A1

Figure 1.7: The Berkovich affine line (with the hole at ∞ pictured).

Example 1.2.1. Given an algebraically closed, non-Archimedean field (K, | · |), we describe

the Berkovich space A1,an
K . For the scheme A1

K , we are looking for seminorms on K(T )

which extend | · |.

There are a few types of seminorms which we can readily identify. First, for every closed

point x ∈ K, we have the seminorm |f |x = |f(x)|. Second, for every closed point and

every r ∈ R>0, we have the seminorm |f |x,r = sup |f(y)|, with the supremum taken over

the closed disc B(x, r).

Note that due to the geometry of non-Archimedean norms, we have | · |x,r = | · |y,r if y is

in the interior of B(x, r). This gives our space paths, where to get from disc B(x, r) to disc

B(y, s), we increase the radius of our first disc from r to r′ until it contains the second disc,

then B(x, r′) = B(y, r′) and we can swap out x for y before shrinking the radius down to s.

The points we have identified are labeled, in the literature, Types I, II, and III. Where
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Type I points are discs of radius 0 (closed points of A1) and Types II and III are the discs

where r is rational (belongs to the image of | · |) or irrational, respectively. There is a fourth

type corresponding to certain limits of closed discs but these points are unimportant to our

discussion.

We visualize A1,an by choosing some disc, commonly the Gauss point ζ = | · |0,1, and

putting it in the centre of the picture. Then, imagine putting the closed points around the

centre “at-infinity.” Within the picture, we have an infinitely branching tree where at each

Type II point, we get branches in every direction corresponding (non-canonically) to P1
K .

The Type I points are leaves of this tree (Figure 1.7). ♢

As alluded to, the centre of the picture could be any Type II point. This is because a

genus 0 graph doesn’t have a unique minimal skeleton in the same way that a genus 1 graph

has a circle as its minimal skeleton.

Example 1.2.2. Suppose X is an elliptic curve such that XFp is a nodal cubic, C. The

skeleton of X has a single vertex corresponding to C plus a loop of some length. The whole

Berkovich space looks like Figure 1.1 except at each point in the skeleton, there is branching

like that in Figure 1.7. On the other hand, if we only take some branches, we can end up

with a picture like in Figure 1.5. ♢

1.2.1 Faithful and fully-faithful tropicalization

Given a meromorphic function f on Xan, we can evaluate it at points of Xan, where if

x ∈ X and | · | is a seminorm on κ(x), we consider the function (x, | · |) 7→ log |f(x)|. It

turns out that this is a piecewise-linear function with integral slopes. So the question is:

which such piecewise-linear functions on a skeleton lift to a meromorphic function on Xan?

So for our project of finding tropicalizations in 3 dimensions, the basic program is:

1. Write down the piecewise-linear coordinate functions for an ansatz embedding

2. Massage them slightly so that they lift.
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3. Ensure that the new coordinate functions have the desired combinatorial properties

(e.g. injective, GCD 1).

1.3 Tropical multiplicities

A related question to divisors is that of multiplicities. Given a polynomial in C[x], we

understand how to consider the multiplicity of a given zero. In terms of tropical polynomials,

these multiplicities are commonly understood through some combinatorics.

Over C, a polynomial a0 + a1x+ · · ·+ anx
n will factor into a product of linear forms:

an(x− λ1)
ν1 · · · (x− λk)

νk . In tropical (min/plus) arithmetic, this factorization looks like

min{Ai + ix} =
∑
νi min{x,Λi} (as functions). Combinatorially, the multiplicities νi are

the horizontal lengths of the edges of slope −Λi in the extended Newton polygon.

Example 1.3.1. One can verify (e.g. graphically) that min{3x, x+ 2, 4} = 2min{x, 1}+

min{x, 2}. The extended Newton polygon is drawn in Figure 1.8. ♢

Slope: −2, Width: 1

Slope: −1, Width: 2

Figure 1.8: Newton polygon for min{3x, x+ 2, 4}

1.4 The Descartes’ Problem

Descartes’ rule gives a bound on the number of positive roots of a real polynomial. If all the

roots are real, this upper bound is sharp. For example, take the polynomial 1−3x−2x2+x5,

Descartes’ rule says take the signs of the coefficients, ignoring zeroes, and look at the number

of times the sign changes. Here that sequence is +,−,−,+ and it changes once from + to
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− and then a second time from − to +. Two sign changes mean at most two positive real

roots. If we change x to −x we find exactly one sign change and hence there is at most one

negative root. One can think about these numbers 2(+) + 1(−) as divisor over signs just

like how polynomials over valued fields have divisors over the tropical numbers (the edge

lengths).

−1 −0.5 0.5 1 1.5

−4

−2

2

4

Figure 1.9: Graph of y = 1− 3x− 2x2 + x5 showing one negative and two positive zeroes.

In multiple variables, there is a theory of tropical intersections (e.g. [JY16]) which

extends the classical Bernstein-Khovanskii-Kushnirenko (BKK) bound. The BKK bound

says that the maximal number of roots in (C∗)n to a system of Laurent polynomials is

bounded by a combinatorial quantity known as a “mixed-volume.”

On the other hand, there is no complete multivariate Descartes’ rule of signs. A summary

of previous work on this problem is described in more detail in the introduction of chapter 4.

For now, let us describe one influential paper of Itenberg and Roy [IR96].

1.4.1 Itenberg and Roy’s theorem and conjecture

Viro’s patchworking [Vir89] gives a way to construct real hypersurfaces with a given

topology. These ideas were later extended by Sturmfels [Stu94b] for complete intersections.

Itenberg and Roy analyzed this patchworking method to construct systems of equations

with as many positive roots as they could (more generally: the roots in any orthant). These
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combinatorial numbers N are a bit technical so we omit a definition. They have something

to do with various ranks and coranks of matrices associated to the vectors of mixed cells.

So given a collection of polynomials f1, . . . , fn with undetermined coefficients but

prescribed signs, Itenberg and Roy construct, via patchworking, an instance of the system

with N positive roots. Therefore N is a lower bound on any possible upper bound (i.e. on

any potential Descartes’ formula). They conjectured that their lower bound was sharp, but

Li and Wang later gave a counterexample [LW98] to this.

1.4.2 Mixed sparse resultants

With Andreas Gross, we were able to recover Itenberg and Roy’s lower bound using

properties of resultants rather than patchworking. Given a collection of polynomials with

undetermined (variable) coefficients, the (mixed sparse) resultant is a polynomial in those

coefficient variables which is zero if and only if the polynomials have a common zero. By

setting one of the polynomials to be the line u0x0 + · · · + unxn, the resultant is now a

polynomial in u0, . . . , un which, if you fix values for the other coefficients, is proportional

to the product ∏
p∈V

(p0u0 + · · ·+ pnun).

Here V is the set of common zeroes (with multiplicity).

In the counterexample of Li and Wang, the signs of the resultant are given in Figure 1.10.

Some signs of the resultant are determined, while others could be either positive or negative

depending on the absolute value of the input coefficients. Nonetheless, even though some

signs cannot be determined, if we look at the boundary of this resultant (by setting one

variable to 0), we get some univariate polynomials to which Descartes’ rule applies. The

signs on the boundary constrain us to a maximum of 3 positive roots—the correct upper

bound!
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∗
+ ∗
+ + ∗
∗ ∗ ∗ ∗
+ ∗ + ∗ ∗
+ − ∗ ∗ − ∗
+ − + ∗ + − ∗

Figure 1.10: A multiple of the signed sparse resultant in the Li-Wang example. A ∗ means
the sign is undetermined.

1.5 Hyperfields and Baker-Lorscheid multiplicities

What Baker and Lorscheid observed, is that for univariate polynomials, both Descartes’

rule of signs and tropical multiplicities can be described algebraically in addition to their

combinatorial definitions [BL21a]. This algebraic multiplicity is computed through factoring

polynomials over hyperfields, which one can think of as fields but where addition may be a

set of one or more elements. Hyperfields arise naturally when we have a field and we want

to identify elements of a similar type (e.g. same sign or same valuation).

1.5.1 The sign hyperfield

Consider the set S = {0, 1,−1} with elements representing zero, a positive number, and

a negative number. The arithmetic on S consists of rules like: (−1) · (−1) = 1, which

means “the product of a negative number and another negative number is positive.” Or:

(−1)⊞ 1 = {0, 1,−1}, meaning “the sum of a negative and a positive number can be any

kind of number.” In this arithmetic, a product of polynomials may be a set of polynomials,

e.g.

(x− 1)(x+ 1) = x2 − x+ x− 1 = x2 + {0, 1,−1}x− 1.

In adding −x and x we can get either 0, x or −x. As a convenient shorthand, rather

than writing this product as a big set, we sometimes write sets for coefficients if they are

undetermined and leave the determined coefficients as they are.
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In this arithmetic, quotients are no longer unique. Therefore, instead of asking for “how

many times does (x− 1) go into f?” we ask for the maximum number of times. In this arith-

metic, Baker and Lorscheid’s result [BL21a, Theorem C] is that Descartes’ combinatorial

rule is equal to this algebraic multiplicity of the maximum number of factorizations.

1.5.2 The tropical hyperfield

We have a way of talking about tropical functions (as functions), but to do algebra, we

are going to want a way to talk about them as polynomials. For instance, we know that

min{1} = min{1, 1} but tropically these are quite different as only in the second one is

the minimum achieved twice! Enter the tropical hyperfield. Let T = R ∪ {∞} and define

a ·T b = a +R b (with usual rules for adding infinity). For tropical addition, we have a

set-valued operation where if we let a0 = min{a1, . . . , an}, then

n

⊞
i=1

ai =


{a0} if the minimum is not achieved twice,

[a0,∞] if it is.

We also identify elements with singleton sets and flatten repeated additions (i.e. we treat addi-

tion using the powerset monad). For the tropical hyperfield, the combinatorial multiplicities

defined earlier, are equal to the algebraic multiplicity [BL21a, Theorem D].

1.6 Tropical extensions

In chapter 3, I describe, among other things, a different proof of Baker and Lorscheid’s

factorization result for T[x]. This proof extends to a more general setting called tropical

extensions. A tropical extension of a hyperfield is analogous to extending a field K to a

valued field of series over K such as Laurent series K((t)) or Puiseux series K{{t}}.

In chapter 3, I show that knowing how to factorize over H , implies we know how to

factorize over any tropical extension of an ordered group Γ by H . More concretely, if f is a
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polynomial over the extension H ⋊ Γ, then it will have various initial forms inw f ∈ H[x]. I

show that factorizations of inw f lift. It is an easier result to show that if f factors then so

does inw f . Thus, we know (for univariate polynomials) that multiplicities of f are equal to

multiplicities of inw f for an appropriate w.

For instance, T is an extension of R by the Boolean/Krasner hyperfield, K = {0, 1}.

The Krasner hyperfield is the hyperfield which arises from identifying all non-zero elements

of a field together and calling this “1.” In K, we can factor out (x + 1) a maximum of d

times from any polynomial of the form xm + · · ·+ xm+d. As an example of what this says,

if we have a polynomial in C[x] whose support is {m, . . . ,m + d}, then that polynomial

will have exactly d non-zero roots.

Applying my result to T[x], if f has an edge in its Newton polygon of slope −Λi, then

∈Λi
f will be something like xm + · · ·+ xm+νi , which has a multiplicity in K of νi. Since

factorizations lift, we can conclude that Λi has multiplicity νi.

My result also applies to extensions by S, for instance to the tropical real hyperfield

which sees application in real tropical geometry (e.g. [JSY22]). An important corollary

is that all of these tropical extensions (by K or S) satisfy the degree bound: the sum of

multiplicities of a polynomial is bounded by its degree. In the hyperfield literature, these

extensions are exactly the stringent hyperfields [BS21], meaning that x⊞ y is always either

a singleton or contains 0.

In chapter 3 we work with a more general class of algebras called idylls. This is largely

for the convenience of being able to talk about polynomial rings as part of the category.1

However, it is also nice to know the broadest natural context in which Baker-Lorscheid

multiplicities can be defined. Some notes about factorization algorithms that appear in the

literature are presented in Appendix A.

1Multiplication of polynomials over hyperfields also becomes set-valued but hyperrings must have single-
valued products.
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1.6.1 Relative multiplicities

As mentioned already, most common hyperfields are quotients of fields. For instance, we

can take a valued field and identify elements which have the same valuation or we can take

a real field and identify elements which have the same sign. These identifications give maps

to hyperfields like T and S and one can ask about relative multiplicities. For example, given

a polynomial in R, we can talk about its image in S and ask for the multiplicity of (x− 1)

in S[x]. This is gives an upper bound on the number of positive roots in R[x] which is exact

if all the roots are real. Likewise, if K is an algebraically-closed valued field, the relative

multiplicity of γ ∈ T is exactly the number of roots in K[x] with valuation γ.

As with the relationship between divisors on curves and those on metric graphs, here we

are relating multiplicities in a field with those in a hyperfield.

1.7 Multivariate multiplicities

There are two directions one can go in to generalize multiplicities to multivariate polyno-

mials. The first, is to consider the multiplicity of a linear factor. This is the most direct

generalization of the univariate multiplicity and avoids complications like having resultants

with some but not all of the signs being determined (Figure 1.10).

We also define some multiplicity operators related to the geometric picture. For instance,

suppose we are given a polynomial with just the signs. Then the Newton polytope is going

to have signs at each lattice point but it won’t have a subdivision we can exploit. But if we

do have a subdivision to exploit—or if we can impose one—then there is more we can say.

This leads to two similar multiplicity operators (one where we have subdivisions and one

where we impose subdivisions).

Example 1.7.1. In Figure 1.11, we have a degree 5 polynomial with given signs. If we want

to compute the multiplicity of (x+ y + z), we might try to impose a (mixed) subdivision in

which we have a triangle with all +’s or all −’s on the vertices. If the mixed subdivision is
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Figure 1.11: Sign compatible subdivision, quotient with induced subdivision, and associated
dual arrangement.

16



compatible with the signs, then we can find a quotient by glueing together the strip of mixed

cells corresponding to intersections with the tropical line which is dual to our triangle.

For the standard multiplicity, we just factor out (x + y + z) as many times as we can.

Here, we also repeatedly factor out (x+ y + z), but we keep the subdivision we imposed

on the problem. This gives us a lower bound on the hyperfield multiplicity: the maximum

number of all + or all − triangles among all sign-compatible mixed subdivisions. ♢

1.7.1 Morphisms and multiplicities

An important lemma which we exploit numerous times, is that morphisms (of hyperfields)

preserve factorizations. For instance, the morphism R → S, or from a valued field to T.

With regards to relative multiplicities, this means that the maximum number of times we

can factor out (x− 1) ∈ S[x] is at least as much as the number of times we can factor out a

positive root in R[x].

This lemma can be extended to initial forms which are composed from a morphism

of hyperfields and a morphism of polynomial rings (multiplying a polynomial by a unit).

These polynomial ring maps are described more categorically in chapter 3 than in chapter 4,

but the conclusion is the same: taking initial forms gives an upper bound on multiplicities,

which is exact in the univariate case (chapter 3).

Example 1.7.2. Let a, b, r, s, t be positive real numbers and let

f = 1 + ax− bx = 0,

g = 1 + rx3 − sy3 − tx3y3 = 0.

Since we have a morphism R → S, we know that multiplicities in S bound the number of

positive common roots of f and g.

If we take the resultant of f, g and l := 1 + ux+ vy, we get a polynomial in u, v whose

signs are pictured in Figure 1.10. Then, we set v = 0 to get a set of univariate polynomials
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in u:

1− u+ u2 ± u3 + u4 − u5 ± u6. (1.2)

This is the bottom row from the picture. We could consider the other edges of the triangle in

the picture, but the minimum occurs for the bottom row (the boundary multiplicity).

Observe that for any choice of signs we make for u3 and u6 in (1.2), the maximum

number of times we can factor out (1 + u) is bounded by 3. It follows, therefore, that the

maximal number of times we can factor out (1 + u+ v) from any choice of signs for the

resultant, is also bounded by 3.

So to summarize:

(relative multiplicity = maximum number of positive common roots to f, g)

≤

(hyperfield multiplicity = maximum number of times we can factor out 1 + ux+ vy)

≤

(boundary multiplicity = maximum number of times we can factor out 1 + ux) = 3

And in this example, Li and Wang gave a specific choice of a, b, r, s, t where we do have 3

positive common roots [LW98]. Hence we have equalities above. ♢
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Part I

Divisors on Metric Graphs
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CHAPTER 2

CONSTRUCTION OF FULLY FAITHFUL TROPICALIZATIONS FOR CURVES

IN AMBIENT DIMENSION 3

Joint work with Philipp Jell.

Classically, it is well-known that while not every algebraic curve is a plane curve, every

curve is a space curve. That is, every curve admits a closed embedding into P3 (see for

instance [Har77, Corollary IV.3.6]). Similarly, every graph has an embedding in R3. In fact,

this can be done with straight lines by putting the vertices as points on the twisted cubic.

Since no plane intersects the twisted cubic in 4 points, no pair of chords on the twisted cubic

can cross.

In this chapter, we study the following question, which might be seen as a tropical

combination of these two facts.

Question. Let X be a Mumford curve over a non-Archimedean field. Does there exist a

map of X to a three-dimensional toric variety such that the associated tropicalization is

fully faithful?

We answer this question positively, with toric variety being (P1)3.

2.0.1 Fully and totally faithful tropicalizations

Let us explain the analogy. Let Y be a toric variety and X an algebraic curve. Both X

and Y have associated Berkovich spaces Xan and Y an. The toric variety Y has a canonical

tropicalization Trop(Y ) which is a partial compactification of RdimY and comes with a

non-constant map tropY : Y an → Trop(Y ). For a map from φ : X → Y we denote by

Tropφ(X) the image of the composition tropφ := tropY ◦φan : Xan → Trop(Y ). We call
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the space Tropφ(X
an) an embedded tropical curve. It is canonically equipped with the

structure of a metric graph (potentially with edges of infinite length).

Also associated with φ is another metric graph with potentially infinite edges: the

so-called completed extended skeleton Σ = Σ(φ), which is a metric subgraph of Xan. It

was shown by Baker, Payne and Rabinoff [BPR16] that Trop(X) = tropφ(Σ) and that

tropφ|Σ : Σ → Trop(X) is a piecewise-linear, integral affine map of metric graphs. The

tropicalization is called fully faithful if this map is an isometry. In particular, a fully faithful

tropicalization admits a section Tropφ(X) → Xan. We can slightly relax those conditions:

A tropicalization is called totally faithful if the map is an isometry when removing the

vertices of Σ that are infinitely far away.

We prove the following theorem (Theorem 2.5.4) and a corollary (Theorem 2.5.1) that is

proved along the way.

Theorem 2.A. Let X be a smooth projective Mumford curve. Then there exist three

rational functions f1, f2, f3 on X such that the tropicalization associated to the map X →

(P1)3, x 7→ (f1, f2, f3) is fully faithful.

Corollary. Let Y be a proper toric variety of dimension three. Then there exists a morphism

φ : X → Y such that the induced tropicalization is totally faithful.

Our construction starts with three piecewise-linear functions on a skeleton of Xan that

were chosen to have the correct combinatorial properties and then tweaked so that we

could lift those piecewise-linear functions to rational functions on X . The choice of these

piecewise linear functions was inspired by Baker’s and Rabinoff’s construction [BR15,

Section 8]. Here, Baker and Rabinoff construct a faithful tropicalization for any curve in

ambient dimension 3. Since they only consider faithful tropicalizations, they get to fix a

skeleton beforehand (as opposed to a complete extended skeleton) and then construct an

embedding that maps that skeleton isometrically onto its image (as opposed to our situation,

where the completed extended skeleton depends on the embedding). This means that Baker
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and Rabinoff get much more freedom when picking their functions and only require a

weaker lifting theorem.

Our main tool is a lifting theorem (Theorem 2.2.1) of the second author [Jel20], that

allows us to lift tropical meromorphic functions on a skeleton to the algebraic curve X . This

theorem refines another lifting theorem of Baker and Rabinoff [BR15].

Similar questions to ours have been considered. For example in the works of Cartwright,

Dudzik, Manjunath, and Yao [Car+16] and Cheung, Fantini, Park, and Ulirsch [Che+16].

However, these results are a bit different in spirit, as the authors start with a given skeleton

and then make a construction that works for some algebraic curve with that skeleton. We

also only care about the skeleton of the curve in our construction, but the map we construct

works for every curve with that skeleton.

While the main body of our text deals with general Mumford curves, i.e. we do not use

any additional properties, our main technique of lifting tropical meromorphic functions can

also be used to construct nice tropicalizations for all curves with a given explicit skeleton.

We exhibit this in section 2.7 for a special skeleton of genus 2.

2.0.2 Smooth tropicalizations

We consider another property of tropicalizations: smoothness. Roughly speaking, an

embedded tropical curve is smooth if locally, at every vertex, the tropical curve looks like

the 1-dimensional fan in Rk whose rays are e1, . . . , ek,−
∑
ei.

We define in Definition 2.6.1 an invariant of an embedded tropical curve that measures

how singular that tropical curve is. We prove the following resolution of singularities result

(Corollary 2.6.3) by showing that we can inductively lower this invariant via re-embedding.

Theorem 2.B. Let X be a Mumford curve and φ : X → Y a map that induces a fully

faithful tropicalization of X . Then there exist functions f1, . . . , fn on X such that φ′ :=

φ × (f1, . . . , fn) : X → Y × (P1)n induces a fully faithful tropicalization of X and such

that Tropφ′(X) is a smooth tropical curve.
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In Theorem 2.6.2, we prove a resolution procedure for singularities of embedded tropical

curves. We use this to show that any smooth algebraic curves admits a map to (P1)2g+2

that results in a smooth tropicalization (Corollary 2.6.5). The best possible bound on the

dimension of the ambient space needed is 2g − 1, since any curve whose minimal skeleton

has a vertex of degree d cannot be embedded smoothly into a space of dimension 2d− 2 (or

smaller). We are hence three off of the optimal bound.

2.0.3 Structure

In section 2.1, we recall the necessary background on tropicalization, Berkovich skeleta and

(tropical) meromorphic functions.

In section 2.2 we construct three tropical meromorphic functions on the skeleton, de-

pending on certain parameters, and we show that these functions are liftable.

In section 2.3 we describe conditions on those parameters that will allow us to prove

Theorem 2.A.

In section 2.4 we show that if our parameters meet the conditions stated in section 2.3,

the map induced by the lifts of the functions from section 2.2 induces a totally faithful

tropicalization.

In section 2.5 we complete the proof of Theorem 2.A by showing that the conditions

in section 2.3 can always be met, and we show that tropicalizations is indeed already fully

faithful.

In section 2.6 we prove Theorem 2.B via a resolution procedure for embedded tropical

curves.

In section 2.7 we exhibit our lifting techniques on a more specific example of a genus 2

skeleton.
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2.1 Preliminaries

Throughout this chapter, K will denote an algebraically closed field which is complete with

respect to a non-trivial, non-Archimedean absolute value | · |K . We denote the value group

of K by Λ := log |K×| ⊆ R.

2.1.1 Tropicalization of curves in Pn

Most of our work in this chapter is concerned with tropicalizing curves in products of

projective spaces. This is a special case of the more general theory of tropicalizing toric

varieties as described in Payne’s article [Pay09]. Although some results in this chapter

are phrased in the more general language of toric varieties, it is sufficient for the reader to

picture products of projective spaces.

Definition 2.1.1. The tropical projective space TPn is the quotient of

(R ∪ {−∞})n+1 \ {(−∞, . . . ,−∞)}

under the following R-action:

λ · (a0, . . . , an) = (a0 + λ, . . . , an + λ).

We define a map Log : Pn
K → TPn by

Log([x0 : · · · : xn]) = [log |x0|K : · · · : log |xn|K ]
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with the convention that log(0) = −∞.

Definition 2.1.2. When X is a projective variety over K that intersects the torus, (K×)n, its

tropicalization is the closure (in the Euclidean topology) of the image of X under Log. We

denote the tropicalization of X by Trop(X).

2.1.2 Limits in TPn

Let us look at the simple case of a tropical curve in TP2. This is a piecewise-linear simplicial

complex with some set of extreme rays. Those extreme rays will have a limit point on one

of the boundary strata of TP2 which we will now describe.

Let R = {[0 : a + tu : b + tv] : t ≥ 0} be a ray in the affine plane, Trop(K2). Let

limR := lim
t→∞

[0 : a+ tu : b+ tv] denote the limit point of this ray.

Case 1. If u < 0 and v < 0 then limR = [0 : −∞ : −∞].

Case 2. If u = 0 and v < 0 then lim[0 : a : b + tv] = [0 : a : −∞]. Similarly if v = 0 and

u < 0.

Case 3. If 0 ≤ u < v then [0 : a+ tu+ b+ tv] = [−tv : a+ t(u− v) : b] and limR = [−∞ :

−∞ : 0]. Similarly if 0 ≤ v < u.

Case 4. If 0 < u = v then [0 : a+ tu : b+ tu] = [−tu : a : b] and limR = [−∞ : a : b].

So if v < u = 0 or u < v = 0 or 0 < u = v then the boundary stratum is 1-dimensional.

Otherwise, the boundary stratum is just a single point. Figure 2.1 illustrates this. For general

n, the boundary strata of TPn forms a simplex.

We will see in section 2.4 that this boundary strata does not have enough components to

separate all of our extreme rays. Instead, we will work with (TP1)3.

For TP1, Definition 2.1.1 is equivalent to the set R ∪ {±∞}. The boundary strata of

(TP1)n can be pictured as the (n− 1)-skeleton of an n-dimensional cube. For instance, in

(TP1)3, parallel rays in the directions ±(0, 0, 1),±(0, 1, 0),±(1, 0, 0) have distinct limits.
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Figure 2.1: Boundary strata of TP2. Parallel rays in the directions (−1, 0), (0,−1) or (1, 1)
intersect the boundary in distinct points. Rays in any other direction intersect the closest
corner.

2.1.3 Metric graphs

Let Γ be a topological space with a distance function d: Γ × Γ → R ∪ {∞}. We call

Γ a metric graph if it admits a 1-dimensional simplicial structure where every edge e

(aka 1-simplex), with the induced distance function de is isometric to a closed interval:

[0, l] ⊆ R ∪ {∞}. We allow the possibility of infinite edges—isometric to [0,∞]— but we

require that these infinite edges be leaf edges.

Explicitly, there exists a set of vertices V and set of edges E. Every edge e has a distance

function de, such that e is isometric to a closed interval. Finally, there are maps ∂e→ V that

tell us how to glue the edges to the vertices. Every edge of Γ has the usual distance function

which we extend to Γ by setting d(x, y) = the length of the shortest path from x to y.

A choice of G = (V,E) is called a graph model of Γ. We forget about all the distance

functions and topologies on E and just remember the lengths. In this way, G is a graph

where each edge e ∼= [0, l] has an associated length l. If G is a graph model of Γ, then so is

any length-respecting subdivision of G. When the graph model is fixed, we may refer to

edges and vertices of G as edges and vertices of Γ.

Note. Usually one would call G a “weighted graph” but since the term “weight” is used in

relation to the tropical balancing condition, we avoid this here.

Given a subgroup Λ ⊆ R (e.g. the value group of K), we say that Γ is a Λ-metric graph
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if it admits a graph model G = (V,E) where the weight of every finite edge of G belongs to

Λ.

Given a graph model G = (V,E) for Γ, the Λ-rational points of Γ are the points whose

distance to some (and hence every) vertex is an element of Λ— we call this set Γ(Λ).

See Section 2.1 of [Ami+15] for another description of a metric graph.

We recall that a spanning tree of a (connected) graph is a maximal, acyclic collection of

edges such that every vertex of the graph is an endpoint of one of these edges. If e1, . . . , eg

form the complement of such a spanning tree, then g—which is well defined—is called the

genus of G. One can check that if G is a graph model of Γ then g = dimQ H1(Γ;Q).

2.1.4 Berkovich analytic spaces

For every variety X over K, there is a topological space, Xan, introduced by Berkovich

[Ber90] called the Berkovich analytification. The points of Xan are pairs (px, | · |x) where

px ∈ X and | · |x is an absolute value on the residue field k(px) at the point px extending the

absolute value of K. The topology on Xan is the weakest topology making the canonical

map Xan → X continuous and, for every open set U of X and section f ∈ OX(U)
×, the

map Uan → R given by

(px, | · |x) 7→ |f(x)| := |f(px)|x

is continuous.

Classification of points

When X is a curve, the points of Xan can be classified into four types.

If px is a closed point of X , then k(px) = K and | · |x = | · |K is the only absolute value

we can take. In this way, we view X(K) as a canonical subset of Xan. Points in X(K) are

called type I points of Xan.

If px is the generic point of X and H (x) is the completion of k(px) with respect to | · |x.

Then we say (px, | · |x) is a type II point if trdeg(H̃ (x)/K̃) = 1 where ·̃ denotes the residue
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field.

The terminology of type I and type II points is due to Thuiller [Thu05] following

Berkovich’s original classification [Ber90]. There is also a notion of type III and IV points

(loc. cit.) which we do not make use of in this chapter.

2.1.5 Skeleta and extended skeleta of curves

When X is a curve, there exists a distinguished set Γ ⊂ Xan called a skeleton of X (or of

Xan) with the following key properties.

1. A skeleton is a metric graph.

2. There is a strong deformation retract τ : Xan → Γ.

3. The map τ∗ : Div(X) → DivΛ(Γ) is surjective and takes principal divisors to principal

divisors. We define the divisor group of Γ in subsection 2.1.8.

We start by defining skeletons for open discs and open annuli. More detail is given in

[BPR13, Section 2].

Definition 2.1.3. Let A1,an = (SpecK[T ])an. We call the sets

B(r) := {x ∈ A1,an : |T |x < r} and A(r, s) := {x ∈ A1,an : r < log |T |x < s}

open discs and open annuli respectively. They are parameterized by real numbers r, s which

we call logarithmic radii. For an open annulus, we also allow r = −∞ in which case

A(−∞, s) is a punctured disc.

The disc B(t) has a distinguished element ρB(t) defined by

∣∣∣∑ aiT
i
∣∣∣
ρB(t)

= max
i

|ai|ti.
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As the disc B(r) expands to B(s) in the annulus, we take distinguished elements to form

the set

Σ(A(r, s)) := {ρB(t) : r < log t < s}.

This is called the skeleton of A(r, s).

The annulus A(r, s) canonically retracts onto Σ(A(r, s)) via

τ : |·|x 7−→ ρB(log |T |x).

Berkovich showed that this is a strong deformation retraction [Ber90, Proposition 4.1.6].

Definition 2.1.4. For a smooth, projective curve X/K, a semistable vertex set V of X is a

finite set of type II points in Xan such that Xan \ V is (isomorphic to) a disjoint union of

finitely many open annuli and infinitely many open discs. Semistable vertex sets always

exist [BPR13, Proposition 4.22]. If χ(X) ≤ 0, then a unique minimal skeleton exists [loc.

cit., Corollary 4.23].

Given a semistable vertex set V of X , the associated (finite) skeleton is

Σ(V ) := V
⋃

Σ(A)

where the union is over the finite set of open annuli of Xan \ V . There is a canonical

retraction τV : Xan → Σ(V ) which is, in fact, a strong deformation retraction.

Σ(V ) is a Λ-rational metric graph with a canonical graph model (V,E). The edges of

Σ(V ) are Σ(A) for each open annulus A. The length of the edge Σ(A) is the length s− r

defined in Definition 2.1.3.

Completed skeleta

A completed semistable vertex set is defined the same as a semistable vertex set except we

also allow ourselves to include some points of type I. These type I points are infinitely far
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away from the finite skeleton. If V is a completed semistable vertex set, then the set of type

II points in V form a semistable vertex set by themselves.

The skeleton associated to a completed semistable vertex set is called a completed

skeleton. It is defined similarly. The main difference is that the addition of type I points

turns some open discs of Xan \ V into punctured discs. The skeleton of a punctured disc is

an edge of infinite length.

Convention. We typically use the letter Γ in this chapter for a finite skeleton and Σ for a

completed skeleton.

Skeleta associated to toric embeddings

Let X be a smooth projective curve and let φ : X → Y be a closed embedding of X into a

toric variety Y . Let T be the dense torus in Y . Let X◦ = φ−1(T ).

Definition 2.1.5. The completed extended skeleton associated to φ is the set Σ(φ) of points

in Xan that do not have an open neighborhood contained in (X◦)an and isomorphic to an

open disc. We write Σ̊(φ) for the skeleton Σ(φ) with its type I points removed.

Example 2.1.6. If Y is a product of P1’s, then φ is defined by a set of rational functions

and X◦ is the set of points that are neither zeroes nor poles of those functions. The skeleton

Σ(φ) contains all of those zeroes and poles as type I points. ♢

2.1.6 Tropicalization of analytic curves

If Y is a projective space (or product of projective spaces) over K, then the map Log : Y →

Trop(Y ) defined in subsection 2.1.1 extends to the analytification, Y an. We call this map

trop: Y an → Trop(Y ).

More generally, if Y is a toric variety, then there is a map trop: Y an → Trop(Y ). See

[Pay09, Section 3] for the definition.
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Example 2.1.7. When Y = P1 = ProjK[z0, z1], the map trop: P1 → TP1 is given by

trop((p, | · |x)) = log |z1(p)|x. ♢

When there is a closed embedding φ ofX into the toric variety Y (e.g. ifX is projective),

we can use this to tropicalize X via

tropφ := trop ◦φan : Xan → Trop(Y ).

The image of Xan under tropφ is denoted Tropφ(X).

2.1.7 Fully faithful, totally faithful and smooth

Let φ : X → Y be a map from X to a toric variety Y , that is generically finite and whose

image meets the dense torus T of Y . Let U := φ−1(T ). Let N be the cocharacter lattice

of T and NR := N ⊗Z R. The map tropφ is called totally faithful (see [Che+16]) if it

induces an isometry from the associated open skeleton Σ̊(φ) onto its image (which is exactly

trop(Xan) ∩NR.) It is called fully faithful if it is further injective when restricted to Σ(φ).

This is equivalent to the statement that tropφ is injective when restricted to φ−1(Y \ T ).

The map tropφ|Σ(φ) is linear with integral slope on each edge of Σ(φ). We call this

slope the stretching factor of tropφ on e. Identifying T with Gn
m, the restriction φU is given

by rational functions f1, . . . , fn on X . Then the stretching factors of tropφ on e is given by

the gcd of the slopes of log |fi||e, i = 1, . . . , n [BPR16, p. 5.6.1]. In particular, φ induces a

fully faithful tropicalization if tropφ|Σ(φ) is injective and all stretching factors are equal to

one.

Let φ : X → Y be a closed embedding and let Σ(φ) be the associated completed

extended skeleton. We say that tropφ is a smooth tropicalization if it is fully faithful and

further for every finite vertex x of Σ(φ) the primitive integral vectors along the edges

adjacent tropφ(x) span a saturated lattice in N of rank deg(x)− 1.
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Usually the conditions for smoothness for tropical curves do not reference fully faith-

fulness and instead weights. This is equivalent to our definition in view of [Jel20, Section

5].

2.1.8 Divisors and rational functions on a metric graph

If Γ is a Λ-metric graph then a (Λ-rational) divisor on Γ is a finite, formal integer-linear

combination of Λ-rational points on Γ. These divisors form a free Abelian group, which we

call DivΛ(Γ).

A rational function on Γ is a piecewise-linear function F with integer slopes and such

that all the points where F is non-linear are Λ-rational. If these points where F is non-linear

are called x1, . . . , xn, then the principal divisor associated to F is

n∑
i=1

mixi

where mi is the sum of the outgoing slopes of F at xi. The principal divisors on Γ form a

subgroup, which we call PrinΛ(Γ).

If τ : Xan → Γ is the deformation retraction of Xan onto its skeleton, then τ maps X(K)

onto Γ(Λ). We can therefore extend this map to a surjective map τ∗ : Div(X) → DivΛ(Γ).

Let f ∈ K(X)∗ be a rational function. Then log |f | is a function on Xan. If F is the

restriction of log |f | to Γ, then it is known that F is a Λ-rational function. Moreover,

τ∗ div(f) = div(F ).

This means that τ∗ takes principal divisors to principal divisors.

Note. These two facts about log |f | are referred to as the “slope formula” or “non-Archime-

dean Poincaré-Lelong formula” in the literature. The formula was first stated and proved in

our terminology by Baker, Payne and Rabinoff [BPR13], Theorem 5.15. The original result

is due to Thuiller [Thu05] who phrased it in terms of potential theory. Thuiller’s formulation
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closely resembles the classical formula for complex manifolds.

More results about the connection between Div(X) and DivΛ(Γ) may be found in

[Bak08b] and [BR15].

Definition 2.1.8. An effective divisor B on a metric graph Γ is called a break divisor if

there exists a graph model G of Γ and edges e1, . . . , eg of G forming the complement of a

spanning tree such that B = x1 + · · ·+ xg where xi ∈ ei.

Break divisors were first introduced by Mikhalkin and Zharkov [MZ08] and were used

by An, Baker, Kuperberg, and Shokrieh [An+14] to give a geometric proof of Kirchhoff’s

Matrix-Tree Theorem.

2.1.9 Mumford curves

Definition 2.1.9. A smooth, projective curve X over K is called a Mumford curve if the

genus of X is equal to the genus (i.e. the first Betti number) of its skeleton.

While the question of which curves admit fully or totally faithful tropicalizations is still

open, it is known that only Mumford curves admit smooth tropicalizations.

Theorem 2.1.10. [Jel20, Theorem A] Let X be a smooth projective curve. Then the

following are equivalent

1. X is a Mumford curve.

2. There exists an embedding φ : X → Y for a toric variety Y such that Tropφ(X) is

smooth.

This theorem shows that, at least for the results of Section 2.6, we have to consider

Mumford curves. The question of whether general smooth algebraic curves admit fully

faithful tropicalizations is open for non-Mumford curves.
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2.2 Construction of fully faithful tropicalization in 3-space

In this section, X will denote a Mumford curve over a complete, algebraically closed,

non-Archimedean valued field K with analytification Xan and skeleton Γ. We take G to be

a graph model of Γ with vertex set V = V (G) and edge set E = E(G).

After possibly subdividing, we assume that G has edges e1, . . . , eg that form the comple-

ment of a spanning tree, T ⊆ E, and that no two edges ei, ej share a vertex.

We will define three piecewise-linear functions F1, F2, F3 on Γ whose graphs are de-

picted in Figures 2.2 to 2.5. To construct these piecewise-linear functions, we consider

divisors on Γ and use the following lifting theorem.

Theorem 2.2.1 (Jell). Let D be a divisor on X of degree g. Given any break divisor

B = x1+ · · ·+xg on Γ supported on 2-valent points, if τ∗D−B is principal then there exist

liftings x′1, . . . , x
′
g ∈ X(K) such that τ∗x′i = xi and such that D −

∑g
i=1 x

′
i is a principal

divisor.

Proof. Theorem 3.2 of [Jel20].

Another equivalent way of writing this theorem is the following.

Theorem 2.2.2. Let D =
∑k

i=1 ai −
∑k

j=1 bj be a principal divisor on Γ. Assume that∑g
i=1 ai is a break divisor supported on 2-valent points. Then, given preimages xi and yj

for all i = g+1, . . . , k and all j = 1, . . . , k such that τ(xi) = ai and τ(yj) = bj , there exist

x1, . . . , xg ∈ X(K) with τ(xi) = ai such that
∑k

i=1 xi −
∑k

j=1 yi is a principal divisor on

X .

Proof. This follows from the lifting theorem applied with

D =
k∑

i=1

bi −
k∑

i=g+1

ai and B =

g∑
i=1

xi.
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2.2.1 Constructions of the piecewise-linear functions and lifting

We construct the piecewise-linear functions F1, F2 and F3 by specifying their divisors. To

construct these divisors, we will need to choose, for each edge e, points which will be

labeled ce, ae, pe, qe, be, de in the interior of e. This will be the order of the points in their

respective edge. We also require that the pairs ce, de and ae, be and pe, qe are symmetric

about the middle of their edges.

We will describe the exact position of these points inside their edges in section 2.3. The

statements of this section do not depend on the choices made in section 2.3.

We pick the following additional data: For every edge e, we label one of its endpoints

v(e) and the other one w(e) and we pick for each edge e a positive integer s(e). We will

describe which vertex is v(e) and which is w(e) in section 2.3 along with conditions for the

integers s(e).

Let {e1, . . . , eg} be the edges not in the spanning tree T and note that the following

divisors are all principal

D1 =
∑
e∈E

v(e) + w(e)− pe − qe,

D2 =
∑
e∈E

s(e) (v(e) + w(e)− pe − qe) +

g∑
i=1

−cei + aei + bei − dei ,

D3 =
∑
e∈E

ae − be.

Let Fi be a piecewise-linear function such that div(Fi) = Di. The graphs of Fi are depicted

in Figures 2.2, 2.3, 2.4 and 2.5. Our graphs look similar to the graphs of the functions used

by Baker and Rabinoff (and depicted in [BR15, Figure 1]), however they are tweaked to fit

with our lifting theorem. Notice for example the slight bumps in Figure 2.5, which are there

specifically to allow application of our lifting theorem.

We now want to lift these functions to Xan by lifting their divisors using Theorem 2.2.2.
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Proposition 2.2.3. For every e there exist lifts a′e, b
′
e ∈ X(K) of ae, be such that

D′
3 :=

∑
e∈E

a′e − b′e

is a principal divisor on X.

Proposition 2.2.4. For every point in {v(e), w(e), pe, qe | e ∈ E} there exist a lift in X(K),

which we denote by v(e)′, w(e)′, p′e, q
′
e respectively such that

D′
1 :=

∑
e∈E

v(e)′ + w(e)′ − p′e − q′e

is a principal divisor on X .

Note. In the previous two propositions, we did not prescribe any lifts for the points in the

support of D3 or D1. However, in the lifting theorem allows us to prescribe all but g lifts. In

the following proposition we will do just that, using the full power of Theorem 2.2.2.

Proposition 2.2.5. Suppose that for every point in {ae, be, v(e), w(e), pe, qe | e ∈ E}, we

are given lifts a′e, b
′
e, v(e)

′, w(e)′, p′e, q
′
e ∈ X(K) respectively. Then for every i = 1, . . . , g,

there exist lifts c′ei and d′ei of cei and dei such that

D′
2 :=

∑
e∈E

s(e) (v(e)′ + w(e)′ − p′e − q′e) +

g∑
i=1

−c′ei + a′ei + b′ei − d′ei

is a principal divisor on X .

Proof. All three Propositions follow directly from Theorem 2.2.2.

We let f1, f2, f3 ∈ K(X) be such that div(fi) = D′
i so that log |fi||Γ = Di. Let U be

the open set of X obtained by removing all the points v′(e), w′(e), a′e, b
′
e, c

′
e, d

′
e, p

′
e, q

′
e for

each edge e. Then we have the map

f := (f1, f2, f3) : U → G3
m.
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For every three-dimensional, proper toric variety Y , this map extends to a morphism

φ : X → Y.

Proposition 2.2.6. Assume that for a vertex v of Σ(φ), the number of adjacent edges is

coprime to
∑

e:v∈e s(e) and that tropφ|Σ̊(φ) is injective. Then the tropicalization induced by

φ is totally faithful.

Similarly, if tropφ|Σ(φ) is injective, then the tropicalization induced by φ is fully faithful.

Proof. We have to check that for each domain of linearity of the functions log |fi|, the gcd of

their slopes is equal to 1. The extended skeleton Σ associated to φ is given by taking Γ and

at each point ce, ae, pe, qe, be, de adding a ray [ce, c
′
e) and so on. Note that here it is crucial

that we were able to select the points we obtained in Proposition 2.2.3 and Proposition 2.2.4

and reuse them in Proposition 2.2.5, otherwise we would have to potentially add multiple

edges.

On the finite edges we have log |fi| = Fi, so this can be checked directly (c.f. Figures

2.2, 2.3, 2.4 and 2.5. ).

On an infinite edge, e, the slope of log |fi| is the coefficient of Di at the finite endpoint

of e. So again this can be checked case by case.

2.3 The right choice of parameters

We now describe conditions on the parameters for which, as we will show in the next section,

the tropicalization map induced by (f1, f2, f3) will be fully faithful.

By parameters, we mean: a subdivision of the skeleton Γ of Xan that is suitable, the

distance of the points ce, ae, pe, qe, be and de from the vertices as well as the values r(v) for

each vertex v and s(e) for each edge e.
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2.3.1 Interval condition

Except for the symmetry of the pairs ce, de, ae, be and pe, qe about their edge’s midpoint, we

have complete freedom on where we choose these points on the interior of each edge. The

arrangement of these points is pictured in Figure 2.6 which we will now describe.

Map each edge e to the real line so that it has one of its vertices, v(e), at 0 and the other

vertex, w(e) at ℓ(e) = the length of e.

Then, we require that the points v(e), ce, ae, pe can be grouped into disjoint intervals

according to what kind of point they are. Namely, every point ce should lie to the left of any

point ae′ , should lie to the left of any point pe′′ . The most restrictive requirement is that we

want a point pe to be to the left of the midpoint of any other edge.

We require that symmetric conditions hold if all the edges are right-aligned at their

vertex w(e). That is, qe should be to the right of every midpoint and every point be′ should

be to the right of qe and every point de′′ should be to the right of be′ .

We will call this requirement on the arrangement of the points, the interval condition.

2.3.2 Conditions for r(v)

We now describe conditions for the constants r(v) that will be the values of F3 at the vertices

v (i.e. r(v) = F3(v)). These constants are related to the points ae and be by

de(ae, be) = |r(w)− r(v)|

for an edge e = vw.

As such, we require that |r(w)− r(v)| is strictly smaller than the length of vw. By

convention, we will write v(e) for the vertex of e with the smaller value of r and w(e) for

the larger value.

We also require two additional properties for the values of r:

(R1) r(v) is distinct for each v ∈ V (G).
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Figure 2.2: The graph of F1|e.
v(e) ae be w(e)
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r(v(e))

r(w(e))

Figure 2.3: The graph of F3|e.

v(e) pe qe w(e)
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Figure 2.4: The graph of F2|e for e ∈ T .

v(e) ce ae pe qe be dew(e)
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Figure 2.5: The graph of F2|e for e /∈ T .

v(e)

w(e)

midpoints

ce ae pe

qe be de

Figure 2.6: Where the points lie on the real line.
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(R2) The distances d(ae, v(e)) = d(be, w(e)) = F1(ae) are distinct for each e ∈ E(G).

2.3.3 Further requirements on locations

In addition to having distinct values of F1 for ae, we require the following conditions:

• for each edge e /∈ T , the points ce to be chosen such that the distances de(v(e), ce)) =

F1(ce) are all distinct,

• and, for each edge e, we require the points pe to be chosen such that the values of

F3(pe) = r(v(e)) + de(pe, ae) are all distinct,

• and, for each edge e, we require that the points qe are chosen such that the values of

F3(qe) = r(w(e))− de(qe, be) are all distinct,

• and finally, we require that F3(pe) ̸= F3(qe′) for any e, e′ ∈ E.

Note. These conditions do not impose a significant restriction because: the points are to be

chosen from an interval, the Λ-rational points are dense, and there are only finitely many

choices to avoid.

Definition 2.3.1. For each edge e, let φe : e→ [0, ℓ(e)] denote the isometry with φe(v(e)) =

0 and φe(w(e)) = ℓ(e). If x ∈ Γ is not a vertex then it is contained in a unique edge e, and

we will write φ(x) for φe(x).

2.3.4 Conditions for s(e)

Recall that to define F2 we have to choose for each edge, e, an integer s(e) > 1. We require

that these integers satisfy the following conditions

(S1) For every edge e, the integers s(e) are all distinct.

(S2) For every edge e, the value of F2 on the interval [pe, qe], is distinct.
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(S3) For any e ∈ T , e′ /∈ T and any x ∈ e we have F2(x) < F2(ce′). Furthermore, the

distance between F2(pe) = maxF2|e and F2(ce′) exceeds (strictly)

max
y∈Γ

F3(y)−min
y∈Γ

F3(y) = max
v∈V (G)

r(v)− min
v∈V (G)

r(v).

(S4) For every edge e /∈ T , the intervals [F2(ce), F2(pe)] ⊆ R are disjoint. Again, the

distance between these intervals should be large in the same sense as (S3). Namely, if

F2(pe) < F2(ce′) for a different edge e′ /∈ T then

F2(ce′)− F2(pe) > max
y∈Γ

F3(y)−min
y∈Γ

F3(y).

Note. Figure 2.7 on page 47 shows what (S3) and (S4) are designed to accomplish.

(S5) For all e ∈ T and e′ /∈ T . If x ∈ e′ with φ(pe) ≤ φ(x) ≤ φ(qe) then F2(x) >

F2(pe) + s(e)λ for any λ ≤ maxF3 −minF3.

Note. The idea is that F2(x) ≈ F2(pe′) and

F2(pe′) ≈ s(e′)F1(pe′) ≫ s(e)F1(pe) = F2(pe).

This is to get around the fact that F2|e′ is not simply equal to s(e′)F1|e′ as is the case in the

construction of Baker and Rabinoff [BR15, Theorem 8.2].

(S6) For each v ∈ V , deg(v) is coprime to
∑

e∋v s(e).

2.4 Injectivity

In this section we continue with the notation from the previous section. Let X be a Mumford

curve with a finite skeleton Γ and a graph model (V,E), Assume that for each e ∈ E, we

have chosen points ce, ae, pe, qe, be, de satisfying the interval condition. Let Y be a proper
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toric variety of dimension 3, and φ : X → Y the morphism that is, on the dense torus, given

by the functions f1, f2, f3 constructed in Section 2.2.

Again, F1, F2, F3 are piecewise linear functions with Fi = log |fi|. For convenience, we

will choose F1 and F2 to take the value 0 at any vertex in V .

Proposition 2.4.1. Let points be chosen on each edge satisfying the interval condition.

Choose parameters r(v) and s(e) satisfying (R1) and (R2) and (S1)–(S6). Then the map

tropφ|Σ̊ : Σ̊ → R3 is injective.

The proof of this proposition is broken up into several lemmas. In each, we assume the

conditions of Proposition 2.4.1 hold.

Lemma 2.4.2. Suppose that x, y ∈ Γ \ V such that F1(x) = F1(y) and F2(x) = F2(y).

Then x and y are contained in the same edge e of Γ and one of the following holds

1. x = y,

2. x is the reflection of y about the middle of e,

3. x, y ∈ [pe, qe].

Proof. By reflecting x or y about the middle of their respective edges e1 and e2 if necessary,

we may assume that v(e1) and v(e2) are the respective closest vertices. Further, if x is

contained in [pe1 , qe1 ], we may replace it by pe1 and the same goes for y and pe2 .

Now we have to show that after these replacements, we have x = y. First observe that

(S4) and (S5) imply that if at least one of e1, e2 is not in T , then F2(x) = F2(y) imply

that either e1 = e2 (in which case F1(x) = F1(y) implies x = y) or both φ(x) < φ(ce1)

and φ(y) < φ(ce2)—which is the interval on which F2|e = s(e)F1|e regardless of whether

e ∈ T or not.

And now we have

de1(v(e1), x) = F1(x) = F1(y) = de2(v(e2), x)
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and

s(e1) de1(v(e1), x) = F2(x) = F2(y) = s(e2) de2(v(e2), x).

It follows from these equations that s(e1) = s(e2) and thus e1 = e2. Then the first equation

implies x = y.

Lemma 2.4.3. The map F |Γ : Γ → R3 is injective.

Proof. Suppose x, y ∈ Γ and F (x) = F (y). If F1(x) = F1(y) = 0 then x and y are vertices

and so r(x) = F3(x) = F3(y) = r(y). Since r takes distinct values on distinct vertices, this

means x = y.

Otherwise, if F1(x) = F1(y) ̸= 0 then x and y are not vertices. It now follows from

Lemma 2.4.2 that x and y lie on the same edge. If x, y ∈ [pe, qe] then x = y since F3|[pe,qe]

is injective. Otherwise, Lemma 2.4.2 gives us that x = x′ or x is y reflected about the

midpoint of its edge. On the other hand, F3 is antisymmetric on each edge so F3(x) = F3(y)

means that x = y.

2.4.1 Infinite rays

Table 2.1: Directions of infinite rays and their limit in TP3 and (TP1)3.

Starting
Point

Direction Limit in TP3 Limit in
(TP1)3

ce; (e /∈ T ) (0, 1, 0) [−∞ : F2(ce) : −∞ : −∞] (F1,∞, F3)
ae; e /∈ T (0,−1,−1) [F1(ae) : −∞ : −∞ : 0] (F1(ae),−∞,−∞)
ae; e ∈ T (0, 0,−1) [F1(ae) : F2(ae) : −∞ : 0] (F1(ae), F2(ae),−∞)

pe (1, s(e), 0) [−∞ : F2(pe) : −∞ : −∞] (∞,∞, F3(pe))

qe (1, s(e), 0) [−∞ : F2(qe) : −∞ : −∞] (∞,∞, F3(qe))
be; e ∈ T (0, 0, 1) [−∞ : −∞ : F3(be) : −∞] (F1(be), F2(be),∞)
be; e /∈ T (0,−1, 1) [−∞ : −∞ : F3(be) : −∞] (F1(be),−∞,∞)
de; (e /∈ T ) (0, 1, 0) [−∞ : F2(de) : −∞ : −∞] (F1(de),∞, F3(de))

v ∈ V (G) ∗ [−∞ : −∞ : F3(v) : 0] (−∞,−∞, F3(v))

∗ =
(
− deg(v),−

∑
e∋v

s(e), 0
)
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For each of the points ae, be, ce, de, pe, qe as well as each vertex of G, we have an infinite

ray in Σ. For example the ray from ae to a′e. Let us refer to each of these rays as p-rays,

c-rays, a-rays, etc.

In this section, we prove that image of the a, b, c, d, p, and q rays do not intersect each

other in R3, or the image of the finite skeleton, Γ. The intersections of these rays at the

boundary strata of TP3 and (TP1)3 is recorded in Table 2.1.

The direction of each of these rays in the image F (Σ) is given by looking at the sum of

the incoming slopes at the point in F . For reference, these directions are also recorded in

Table 2.1.

Lemma 2.4.4. The image of [ce, c′e) or [de, d′e) under F intersects the image of Γ only at ce

or de respectively.

Proof. The first two coordinates of the ray at ce and the ray at de are identical, so we

will only make a distinction between c-ray or d-ray when we start talking about the third

coordinate.

A point on F ([ce, c′e)) or F ([de, d′e)) is of the form

F (ce or de) + λ(0, 1, 0)

for some λ ≥ 0. Suppose that some point of this ray coincides with F (x) for some x ∈ Γ,

belonging to an edge e′, which would mean F (x) = F (ce or de) + (0, λ, 0).

First, if e′ ∈ T , then by (S3), F2(x) < F2(ce) ≤ F2(ce) + λ. Therefore, we must have

e′ /∈ T .

Let v denote the vertex closest to x. Then we have

de′(v, x) = F1(x) = F1(ce) = de(v(e), ce).

By the interval condition, this implies that x ∈ [v, ae′ ] or x ∈ [be′ , w].
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Now, looking at the third coordinates, we have

r(v) = F3(x) = F3(ce or de) = r(v(e) or w(e)).

By (R1) we must have v = v(e) or v = w(e). Since the edges outside T do not share a

vertex, this means e = e′.

Since e = e′ and F1(x) = F1(ce), we either have x = ce or x = de. If we started with

a c-ray, then F3(x) = F3(ce) implies x = ce because F3 is antisymmetric on [ce, de] and

likewise if we started with a d-ray.

Lemma 2.4.5. For e /∈ T , the image of [ae, a′e) and of [be, b′e) intersects the image of Γ only

at ae or be respectively.

Proof. As before, the first two coordinates of the ae and be-rays are identical, so we will

only make a distinction between a-ray or b-ray for the third coordinate.

Suppose that x ∈ Γ and F (x) = F (ae or be)+λ(0,−1,±1). Let e′ be an edge containing

x. Since F1(x) = F1(ae), we have x ∈ [ce′ , pe′ ] or x ∈ [qe′ , de′ ] by the interval condition.

Therefore, F2(x) ∈ [F2(ce′), F2(pe′)].

On the other hand, by (S3) or (S4) the distance between F2(x) and F2(ae) is quite large

if e′ ̸= e. Specifically, if e′ ̸= e we have

λ = F2(ae)− F2(x) > maxF3 −minF3 ≥ |F3(ae or be)− F3(x)| = λ.

See Figure 2.7 for a picture of the situation.

Since this is impossible, we must have e′ = e. Now, from F1(x) = F1(ae) we have

either x = ae or x = be, and then we can use F3 to distinguish between ae and be.

Lemma 2.4.6. For e ∈ T , the image of [ae, a′e) or [be, b′e) intersects the image of Γ only at

ae or be respectively.

Proof. Suppose that x ∈ Γ and F (x) = F (ae or be) + (0, 0,±λ) for some λ ∈ R≥0. Then
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in particular, F1(x) = F1(ae) and F2(x) = F2(ae) so by Lemma 2.4.2 we have x = ae or

x = be.

For the [ae, a′e)-ray, we have F3(be) > F3(ae) ≥ F3(ae)− λ = F3(x). So we can’t have

x = be, hence we must have x = ae.

Likewise, for the [be, b
′
e)-ray, we have F3(ae) < F3(be) ≤ F3(be) + λ = F3(x).

Lemma 2.4.7. The image of [pe, p′e) or [qe, q′e) intersects the image of Γ only at pe or qe,

respectively.

Proof. Let x ∈ Γ with F (x) = F (pe or qe) + λ(1, s(e), 0) and λ ≥ 0. Let e′ be an edge

that contains x and e ̸= e′.

Suppose, for now, that x is closest to v(e′) since this part of the argument is symmetrical.

First, suppose e, e′ ∈ T . Then F1(x) = F1(pe) + λ means F2(x) = s(e′)F1(x) =

s(e′)F1(pe)+s(e
′)λ. But, on the other hand, F2(x) = F2(pe)+s(e)λ = s(e)F1(pe)+s(e)λ.

This is impossible unless e = e′.

Next, because min{φ(x), φ(pe′)} = F1(x) ≥ F1(pe) = φ(pe), we have φ(pe) ≤

φ(x) ≤ φ(qe) by the interval condition. Thus,

λ = F1(x)− F1(pe) ≤ d(pe, qe) ≤ d(ae, be) ≤ maxF3 −minF3.

We should think of λ as being small.

If e /∈ T then already F2(pe) + s(e)λ ≥ F2(pe) > F2(x) for any x ∈ e /∈ T .

If e ∈ T but e′ /∈ T then we appeal to (S5) to see that this is impossible.

Thus, e = e′ and from now the argument is no longer symmetric. Next, since F1(pe) =

maxy∈e F1(y), it must be that λ = 0 and x ∈ [pe, qe]. Since F3 is injective on this interval,

we have x = pe or x = qe depending on whether we started with a p-ray or a q-ray.
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F2(ce)

F2(x)

> maxF3 −minF3

λ =

Figure 2.7: Situation in Lemma 2.4.5

Comparing between rays

Note. These proofs are all quite short and just come down to requiring some parameters

being distinct.

Lemma 2.4.8. Any pair of distinct c-rays or pair of distinct d-rays do not intersect.

Proof. An intersection between two c-rays has the form F (ce)+(0, λ, 0) = F (ce′)+(0, µ, 0)

for some λ and µ. Because we chose distinct values for F1(ce) = de(ce, v(e)), and F1(ce) =

F1(ce′), therefore e = e′.

For d-rays, simply change c to d and v(e) to w(e).

Lemma 2.4.9. Any pair of distinct p-rays or pair of distinct q-rays do not intersect.

Proof. Two p-rays look like F (pe) + (λ, s(e)λ, 0) = F (pe′) + (µ, s(e)µ, 0). Because we

chose distinct values of F3(pe) = r(v(e)) + de(pe, ae), and F3(pe) = F3(pe′), therefore

e = e′.

Likewise, we chose distinct values for F3(qe) so no pair of distinct q-rays can intersect.

Lemma 2.4.10. Any pair of distinct a-rays or b-rays do not intersect.

Proof. The first coordinate of every point in an a-ray or b-ray is F1(ae). By (R2), these

quantities are distinct.
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Lemma 2.4.11. No pair of a, b, c, d, p, or q-rays intersect, except possibly a with b, c with d

and p with q.

Proof. Note that the first coordinates of these rays are F1(ae), F1(ce) and F1(pe) + λ

respectively. By the interval condition, these are ordered

F1(ae) < F1(ce) < F1(pe) ≤ F1(pe) + λ.

Lemma 2.4.12. An a-ray cannot intersect a b-ray.

Proof. Because the values of F1(ae) = F1(be) are distinct, an a-ray can only possibly

intersect the b-ray belonging to the same edge. But then

F3(ae)− λ ≤ F3(ae) < F3(be) ≤ F3(be) + µ

for all λ, µ ≥ 0.

Lemma 2.4.13. A c-ray cannot intersect a d-ray.

Proof. Because the values of F1(ce) = F1(de) are distinct, a c-ray can only possibly intersect

the d-ray belonging to the same edge. But then F3(ce) < F3(de).

Lemma 2.4.14. A p-ray cannot intersect a q-ray.

Proof. Because the values of F1(pe) = F1(qe) are distinct, a p-ray can only possibly

intersect the q-ray belonging to the same edge. But then F3(pe) < F3(qe).

Lemma 2.4.15. Two distinct vertex rays do not intersect.

Proof. Note that the third coordinate of a vertex ray is F3(v) = r(v) and these values are

distinct by (R1).

Lemma 2.4.16. A vertex ray does not intersect an c, d, a, b, p, or q-ray.
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Proof. Note that the first coordinate of a vertex ray is

F1(v)− λ deg(v) = −λ deg(v) ≤ 0 < F1(ce) < F1(ae) < F1(pe).

2.5 Fully and totally faithfulness

In this section we prove Theorem 2.A from the introduction. The majority of the work was

done in the previous section. In this section we show that all the assumptions we made there

can actually be achieved. We fix a Mumford curve X .

Theorem 2.5.1. Let Y be a proper toric variety of dimension three. Then there exists a

morphism φ : X → Y such that the induced tropicalization is totally faithful.

Proof. Let Γ be a finite skeleton of X . By simply adding a leaf edge to Γ, we may assume

that Γ has a leaf edge. We pick a graph model G = (V,E) for the Λ-metric graph Γ, and

we chose the points ce, ae, pe, qe, be, de satisfying the interval condition, and we pick values

r(v) such that (R1) and (R2) are satisfied. Now since we assumed that Γ has a leaf edge,

Lemma 2.5.2 shows that we can pick s(e) for e ∈ E such that (S1)–(S6) are satisfied.

The rational functions f1, f2, f3 constructed in Propositions 2.2.3, 2.2.4 and 2.2.5 define

a rational map X → G3
m. Identifying the dense torus of Y with G3

m and using the fact that

both X and Y are proper, we obtain a morphism φ : X → Y .

By Proposition 2.4.1, the map tropφ|Σ̊(φ) is injective. By Proposition 2.2.6, this means

that tropφ is totally faithful.

Lemma 2.5.2. If Γ has a leaf edge, it is possible to pick s(e) in a way such that they satisfy

(S1)–(S6).

Proof. Let us focus on (S6) first. Pick any set of numbers s(e) for all e ∈ E. We pick a

point z that lies in the interior of an edge and subdivide Γ by introducing z as a vertex. Let

v and w be two vertices of Γ, joint by an edge e. Note that one can always achieve that (S6)

holds at v by changing s(e) an appropriate amount.
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Note further that for any vertex v except z, their exists a vertex w that lies closer to z

that v. For every v fix such a choice wv. Now working ones way closer to z, by each time

changing s(ev), where ev is the edge joining v and wv, we get S(6) to hold for all vertices

except z. We now add a leaf edge e at z and are done, since we can pick s(e) in a way such

that (S6) holds at z.

The other properties can all be achieved by making the s(e) very large with large

differences between them. This can be achieved by adding multiples of
∏

v∈Γ deg(v) to the

s(e), so they remain coprime.

Now let us take a closer look at two particular toric varieties: P3 and (P1)3. The

functions f1, f2, f3 are the ones constructed in Propositions 2.2.3, 2.2.4 and 2.2.5 with the

parameters chosen as in Section 2.3.

Proposition 2.5.3. Let φ : X → P3; x 7→ [f1(x) : f2(x) : f3(x) : 1]. Then the induced

tropicalization is not fully faithful.

Theorem 2.5.4. Let φ : X → (P1)3; x 7→ (f1(x), f2(x), f3(x)). Then the induced

tropicalization is fully faithful.

Proof. Both these statements follow from Table 2.1 that lists the endpoints of the rays in the

respective compactifications together with the requirements of subsection 2.3.3 that force

the endpoints to be distinct.

2.6 Resolution of singularities

2.6.1 A conceptual approach

Throughout this section, we fix a Mumford curve X and a morphism φ : X → Y for a toric

variety Y that induces a fully faithful tropicalization.
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e0 ekv p(v)k−2 q(v)k−2 r(v)k−2p(v)0q(v)0r(v)0

Figure 2.8: The graph of Fek(v) along the edges ek(v) and e0(v). The function Fek is
constant 0 on all other edges.

Definition 2.6.1. Let Tropφ(X) be the corresponding tropical curve in Rn and let x ∈

Tropφ(X). We define the local degree of non-smoothness of Tropφ(X) at x to be

nφ(x) = deg(x)− 1−max{k | tangent vectors v1, . . . , vk (2.1)

span a saturated lattice of rank k}.

Note. Consider the tropical curve in Figure 2.9. The circled point x has degree 4, one can

find two tangent vectors that span Z2, but any three will still span Z2. We conclude that

nφ(x) = 1.

In general, x is a smooth point if and only if nφ(x) = 0.

Theorem 2.6.2. With notation as above, there exists a rational function f on X such that

if we denote by φ′ : X → Y ×P1, x 7→ (φ(x), f(x)) the associated embedding, φ′ is fully

faithful and

nφ′(z) =


nφ(z)− 1 if nφ(z) > 0

0 if nφ(z) = 0

for all z ∈ Σ(φ).

Proof. For each vertex z in Σφ such that nφ′(z) > 0, pick tangent vectors e(z)2, . . . , e(z)k+1

which span a saturated lattice as in(2.1). Further, fix two other adjacent edges e(z)0 and

e(z)1. In both e(z)0 and e(z)1 we choose points p(z)i, q(z)i, r(z)i ∈ e(v)i that are close to
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z, in the sense that they are closer to z then to the other vertex of e(z)i. Further they should

satisfy d(p(z)i, z) = d(q(z)i, r(z)i).

We now let

Dz = −p(z)1 − q(z)1 + r(z)1 + p(z)0 + q(z)0 − r(z)0 and

D =
∑

z∈Σ,n(z)>1

Dz.

Let Γ be the finite skeleton obtained from Σ(φ) that is obtained by removing the infinite

edges. Let Γ′ be a subdivision of Γ such that all the r(v), q(v), p(v) are vertices. Now we

pick edges e1, . . . , eg of Γ that form the complement of a spanning tree and in each edge we

pick points sj1, s
j
2, s

j
3, s

j
4 that occur on ej in this order and satisfy dej(s

j
1, s

j
2) = dej(s

j
3, s

j
4).

Denote by P the divisor

P =

g∑
j=1

sj1 − sj2 − sj3 + sj4

on Γ. Now by the lifting theorem (Theorem 2.2.2), we find lifts of all points in the support

of D + P such that the divisors D′ and P ′ satisfy that D′ + P ′ is principal and τ∗P ′ = P

and τ∗D′ = D.

Let f be such that div(f) = D′ + P ′. We claim that f has the required properties. One

checks easily that the tropicalization is again fully faithful.

Let z be a vertex of Σ(φ) and v1, . . . , vk+1 be as above. Then the images of the tangent

vectors at z are now

(v1, 1) (v2, 0) . . . (vk+1, 0). (2.2)

The lattice L′ spanned by the vectors in (2.2) is of rank k + 1. We have Zn+1/L′ ∼= Zn/L,

using the map

Zn+1 → Zn; (x1, . . . , xn) 7→ (x1 − v1xn+1, . . . , xn − vnxn+1),
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where v1 = (v1, . . . , vn). In particular, L′ is saturated. Since we do not add any edges at z,

we have nφ′(z) = nφ(z)− 1.

If z is a vertex with nφ(z) = 1, then log |f | is constant in a neighborhood of z and thus

nφ′(z) = 1.

If z is one of the points in the support of D, then it is contained in an edge of Σ. Denote

by w the vector in the direction of e in Tropφ(X). Then z is of degree 3 in Σ′ and the set of

direction vectors is either

{(w, 1); (w, 0); (0,−1)} or {(w,−1); (w, 0); (0, 1)}.

In particular, those span a saturated lattice of rank 2 and nφ′(z) = 1.

Corollary 2.6.3. Let n(φ) = maxz∈Σ(nφ(x)). Then there exist n(φ) rational functions

f1, . . . , fn(φ) on X such that if we denote by

φ′ : X → Y × (P1)n(φ),

x 7→ (φ(x), f1(x), . . . , fn(φ))

the associated embedding, Trop′
φ(X) is smooth.

Proof. This follows by applying Theorem 2.6.2 inductively until nφ′(z) = 0 for all z.

2.6.2 Application to our situation

In this section, we prove the following theorem:

Theorem 2.6.4. Let X be a Mumford curve. Let C be the maximal degree of a vertex on

the minimal skeleton Γ of X . Then there exists a map X → (P1)C+2 that induces a smooth

tropicalization of X .

Note. This is 3 more than the optimal bound of C − 1 that is determined by the definition of

smoothness in terms of spans of direction vectors (c.f. subsection 2.1.7).
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Proof. Let X → (P1)3 be a map that induces by fully faithful tropicalization, as in The-

orem 2.5.4. Note that the maximum degree of a vertex in Σ(φ) is C + 1, as we add one

infinite edge at every vertex. Let z be a vertex of Γ and e1, . . . , ek the adjacent edges. Let e0

be the adjacent infinite edge in Σ. The tangent vectors in the tropicalization we constructed

are of the form

(1, se1 , 0), . . . , (1, sek , 0), (k,−
∑

sei , 0).

Unfortunately, no two of these span a saturated lattice of rank 2. We conclude that nφ(z) =

degΣ(x)− 2 = degΓ(z)− 1.

Since all other z ∈ Σ(φ) are at most trivalent, we conclude that n(φ) = C − 1.

The result now follows from Corollary 2.6.3 and the fact that C − 1 + 3 = C + 2.

Corollary 2.6.5. Let X be a Mumford curve of genus g. Then there exists a map X →

(P1)2g+2 that induces a smooth tropicalization of X .

Proof. The minimal skeleton of a genus g Mumford curve has first Betti number g. Any

vertex in a graph with genus g has degree at most 2g. Thus the Corollary follows from

Theorem 2.6.4.

2.7 A genus 2 curve

A construction for tropicalizing certain genus 2 Mumford curves has been given by Wagner

[Wag17]. For skeleta consisting of two loops joined at a common point, his construction is

pictured in Figure 2.9. In ambient dimension 2, there is an intersection point. Wagner fixes

this by adding in a third rational function to resolve the crossing in ambient dimension 3.

Wagner’s construction does not consider the singularity at the four-valent vertex and

further analysis is required to show this point can be made smooth.

In this section, we show how to approach such tropicalization questions combinatorially

from a rough-draft picture and how resolving this four-valent point comes “for free” with

our approach.
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Figure 2.9: First step of Wagner’s construction of a tropicalization of a genus two curve
with an intersection circled.

2.7.1 Picturing the construction

Picturing how the skeleton should be embedded in TP3 tells us how to construct the divisors.

The first picture we visualize is just two hexagons attached at a common vertex and contained

in the planes z = 0 and x = y respectively. Second, we figure out how all the infinite rays

should go so that the rays have directions (−1, 0, 0) or (0,−1, 0) or (0, 0,−1) or (1, 1, 1) so

that we can guarantee that they do not intersect in the boundary strata of TP3. This gives us

the picture of Figure 2.10.

vα
β

Figure 2.10: First draft of how the genus 2 skeleton is embedded in TP3.

Let Xan be the analytification of a curve whose skeleton consists of two loops, α and β,

connected at a common point, ω.

In order to form the hexagons, we need to choose 5 points spaced equidistant around
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ω

α1
β1α2

β2

α3 β3

α4
β4

α5
β5

γ1

δ1

γ2

δ2

γ3

δ3

γ4

δ4

Figure 2.11: Skeleton Γ of X .

each loop of the skeleton. To that end, let α1, . . . , α5 be points spaced equidistant around α

and β1, . . . , β5 equidistant around β. See Figure 2.11.

We will arrange so that α is the hexagon in the x = y plane and β is in the z = 0 plane.

For the first divisor, we note that the x-coordinate stays constant between ω and α1, then

decreases linearly, with slope 1, from α1 to α3 and so on. Writing down where the slope

changes gives us the divisor

α1 − α3 − α4 + β2 + β3 − β5.

Doing the same for the y-coordinate, gives us the divisor

α1 − α3 − α4 − β1 + β3 + β4.

The α-hexagon is contained in the x = y plane, so it makes sense that the first three terms

of each divisor are identical. However, this presents a problem because we need the lifting

theorem to choose lifts for us on a break-divisor and we don’t have any points we can allow

the lifting theorem to choose for us on the α-cycle.

We also need to consider the infinite rays. For example, at α2 we have a ray going

straight up (direction: (0, 1, 0)) and then branching in the directions (−1, 0, 0), (0,−1, 0)

and (1, 1, 1). Thus we have two rays that have a non-zero x-coordinate and two rays that

have a non-zero y-coordinate. Therefore, we need to lift α2 to x2,0 − x2,1 and x2,0 − x2,2 for
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the x and y coordinates respectively.

2.7.2 A proper construction

In order to construct this embedding properly, we first need to choose 4 points γ1, . . . , γ4

spaced equidistant between two previously marked points, let’s say ω and α1 and another

four points δ1, . . . , δ4 spaced equidistant between β1 and β2. These points provide for us

break-divisors which we can feed into Theorem 2.2.2. These points are also pictured in

Figure 2.11.

As in section 2.2, we apply Theorem 2.2.2 to the data of Table 2.2 where the break

divisors are the sum of the circled quantities. This yields three piecewise-linear function

F1, F2, F3 from the extended skeleton to TP1.

Table 2.2: Divisors on Γ and on Xan. Lifts are chosen first for D1, then D2, then D3.

τ∗D1 D1

+α1 x1
x2,0 − x2,1

−α3 −x3,1
−α4 −x4,1
+β2 y2,0

+β3 y3,0
y4,0 − y4,1

−β5 −y5
u2,0 − u2,1
u3,0 − u3,1
v2,0 − v2,1
v3,0 − v3,1

τ∗D2 D2

+α1 x1
x2,0 − x2,2

−α3 −x3,2
−α4 −x4,2
−β1 − y1

y2,0 − y2,2
+β3 y3,0
+β4 y4,0
−γ1 − u1
+γ2 u2,0
+γ3 u3,0
−γ4 −u4

v2,0 − v2,2
v3,0 − v3,2

τ∗D3 D3

+α1 x1
+α2 x2,0
−α4 −x4,3
−α5 − x5

y2,0 − y2,3
y3,0 − y3,3
y4,0 − y4,3
u2,0 − u2,3
u3,0 − u3,3

−δ1 − v1
+δ2 v2,0
+δ3 v3,0
−δ4 −v4

Here the notation for the lifts is as follows:

• x’s correspond to α’s, y’s to β’s, u’s to γ’s and v’s to δ’s

• lifts with a single subscript are the unique lift of that point in Xan (and this lift is

consistent for each divisor)
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• for a lift with two subscripts, e.g. xi,j , the first subscript represents the index of the

corresponding point of Γ (so xi,j is a lift of αi). The second subscript corresponds to

which divisor the lift is for (e.g. xi,j is a lift for Dj). If the second subscript is 0, the

lift appears in all three of D1, D2, D3 (and again, the lift is consistent).

We choose multiple lifts of the same point of Γ in order to ensure the resulting tropicaliza-

tion is “injective at infinity” i.e. we have an embedding in TP3. This is achieved by choosing

the lifts in such a way that all the infinite rays have directions (−1, 0, 0), (0,−1, 0), (0, 0,−1)

or (1, 1, 1).

Having done this, we need to ensure smoothness, and this requires us to choose the lifts

over a point p to share a common initial segment of length ℓ(p) as in Figure 2.12.

α2

length ℓ(α2)

x2,0

x2,2

x2,3

Figure 2.12: α2 and its lifts (dashed lines are infinite).

Proposition 2.7.1. The data in Table 2.2 allows us, via Theorem 2.2.2, to find rational

functions f1, f2, f3 onXan whose divisors areD1, D2, D3 and such that div(log |fi|) = τ∗Di

for all i. As before, we let F = (F1, F2, F3).

For convenience, we will assume that F (v) = (0, 0, 0).

2.7.3 Injective, smooth and fully-faithful

The goal of this section is to explain why this construction is smooth and fully-faithful and

how to choose the appropriate parameters to make the construction injective.

First, we will explain how the picture we started with (Figure 2.10) does not have

any crossings. After that, we will explain how to choose the data corresponding to

γ1, . . . , γ4, δ1, . . . , δ4 to get an injective lift.
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v
α

v

β

Figure 2.13: The x = y and z = 0 planes in our construction. Dashed lines represent where
the other hexagons are (outside the planes).

The following Proposition is included for completeness, to show that we have a crossing-

free tropical variety in Figure 2.10. If the reader is sufficiently convinced by the image in

Figure 2.10, they may prefer to continue reading the proof in Proposition 2.7.3.

Proposition 2.7.2. The rough draft in Figure 2.10 does not contain any crossings.

Proof. To start: the two hexagons do not cross each other because they are separated by the

plane x+ y = 0.

Second, the rays starting at the hexagons do not cross the hexagons. These rays can all

be separated by a plane that contains one of the edges of the hexagon at the vertex where the

ray originates.

Also, the rays starting at the hexagons do not intersect other such rays. We can see this

in Figure 2.13 or by writing down the rays.

For example, the rays of the β hexagon have z = 0 and do not have a chance of

intersecting most of the rays of the α hexagon. If we extend the lines of the β hexagon to

infinity in Figure 2.13, they separate all the rays, including the one ray of the α hexagon.

Lastly, we have all the infinite rays that branch off of another ray. Let us first consider

those rays in the direction (−1, 0, 0). Of course, none of these rays will intersect each other

because they are parallel.

Neither will they intersect the rays in the direction (0,−1, 0) since every ray in the

direction (−1, 0, 0) lies on one side of the plane x = y and every ray in the direction
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(0,−1, 0) on the other.

Nor will they intersect the hexagons or the rays coming off of the hexagons which we

can see by examining the position of each of the rays with respect to the planes x = y, z = 0

or x+ y = 0. Figure 2.13 gives some insight to this.

For example, at α2, the ray in the (−1, 0, 0) direction has z > 0 and x ≤ y. So it will

not intersect anything with z ≤ 0, nor anything with x > y, and it only intersects the plane

x = y at one point. This excludes everything. In fact, by checking each ray, we see that

these three planes (x = y, z = 0 and x+ y = 0) are enough to separate each ray.

The rays in the direction (0,−1, 0) are just the mirror image of those in the direction

(−1, 0, 0) after reflecting in the x = y plane. So anything we said about the (−1, 0, 0)-rays

holds for the (0,−1, 0) rays.

The story is the similar for the rays in the direction (1, 1, 1) and (0, 0,−1). For example,

rays in the direction (1, 1, 1) all start with z ≥ 0 and rays in the direction (0, 0,−1) all start

with z ≤ 0. So these types of rays don’t intersect each other, nor the hexagons, nor the rays

coming directly off of the hexagons.

Finally, there is no intersection between infinite rays in any direction as we can see by

checking the position with respect to various planes at each ray. Namely, the planes x = y,

z = 0, x+ y = 0 work.

Figure 2.14: Position of the new rays added from the rough draft.
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Now let us look at the construction in Table 2.2 which has some extra bits added to it,

pictured in Figure 2.14. The bumps at δ1, . . . , δ4 and γ1, . . . , γ4 are small enough that they

should not impact injectivity. But we can also make the bumps arbitrarily small if we are

concerned by decreasing the distances between δ1 and δ2 and between γ1 and γ2.

Figure 2.15: Where the rays in −x and −y direction originate at γ2, γ3. Projection onto the
x = 0 and y = 0 planes.

The idea, which one can see in Figure 2.15, is that there is some compact set (possibly

even finite) of lengths that would cause an intersection and outside which, all other lengths

work.

Proposition 2.7.3. We can choose the lengths ℓ(δ2), ℓ(δ3), ℓ(γ2), ℓ(γ3) to get an injective

embedding of our curve.

Proof. First, project onto the plane z = 0. Here you can see that the infinite rays at δ1, δ4 do

not intersect any part of the rough draft.

Similarly, in the projection onto x = 0, we can see that the rays at γ1, γ4 do not intersect

any part of the rough draft.

Now, consider the finite rays at δ2, δ3. These point in the +y direction and, in fact, all

other rays that point in the +y direction are finite. Meaning if ℓ(δ2) and ℓ(δ3) are large

enough, then there are no more rays parallel to the δ2 and δ3 rays.

Therefore, after a certain threshold, when we start three infinite rays in the directions

(−1, 0, 0), (0, 0,−1) and (1, 1, 1), there are only finitely many lengths that would cause an

intersection with any part of the rough draft.

61



On the other hand, the ray at δ3 going in the −z direction will intersect the finite ray at

δ2 if ℓ(δ3) ≤ ℓ(δ2). If we assert that ℓ(δ2) < ℓ(δ3), there are no issues.

For the rays at γ2, γ3, it is the same picture: a bounded set of lengths that would cause

an intersection, afterwards the only issue is that the ray in the (1, 1, 1) direction at γ2 might

intersect the finite ray at γ3. So again, we assert that ℓ(γ3) < ℓ(γ2).

By construction, the infinite rays have directions (−1, 0, 0), (0,−1, 0), (0, 0,−1) or

(1, 1, 1). It it easy to see that rays in these directions intersect at infinity in TP3 if and only

if they intersect in R3.

Proposition 2.7.3 is the hard part. Afterwards, smoothness and fully-faithfulness come

for free from how we constructed the rough draft.

Proposition 2.7.4. If we choose the lengths ℓ(δ2), ℓ(δ3), ℓ(γ2), ℓ(γ3) such that the tropical-

ization is injective it is also smooth and fully faithful.

Proof. Since the map is injective, and along each edge the gcd of the slopes of the functions

F1, F2, F3 is 1 (by construction), thus the weight of every edge is 1. Therefore, the map is

fully-faithful.

For smoothness (which is also by construction), we simply have to check all the vertices.

For example, at α1 the outgoing directions are, according to Table 2.2,

(1, 1, 1) along the ray towards infinity,

(0, 0,−1) along the ray towards v,

(−1,−1, 0) along the ray towards α2.

The lattice spanned by these three rays is {(x, y, z) ∈ Z3 | x− y = 0}. This is clearly of

rank 2 and saturated.

62



At v, the rays are

(0, 0, 1) along the ray towards γ1,

(0, 1, 0) along the ray towards β1,

(1, 0, 0) along the ray towards β5,

(−1,−1,−1) along the ray towards α5.

The lattice spanned here is Z3.

All other vertices can be checked similarly. Therefore, the tropicalization is smooth.
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Part II

Multiplicities over Hyperfields
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CHAPTER 3

TROPICAL EXTENSIONS AND BAKER-LORSCHEID MULTIPLICITIES FOR

IDYLLS

Let P be a polynomial over a field K, where K has some additional structure like an

absolute value or a total order. Two classical problems are determining the relationship

between the absolute values or the signs of the coefficients and those of the roots. Newton’s

rule describes the relationship between a non-Archimedean valuation of the coefficients and

of the roots. Descartes’s rule describes the number of positive roots or negative roots with

respect to the pattern of signs of the coefficients.

Recently, Matthew Baker and Oliver Lorscheid [BL21a] put these kinds of questions

into a common framework known as hyperfields, which are algebras1 which capture the

arithmetic of signs or of absolute values. For instance, S := R/R>0 = {[0], [1], [−1]}

is the hyperfield of signs. Multiplication and addition in S come from the quotient. I.e.

[a][b] = [ab] and addition of equivalence classes is given by
∑

[ai] = {[
∑
a′i] : a

′
i ∈ [ai]}.

For example, [1] + [1] = {[1]} and [1] + [−1] = {[0], [1], [−1]}.

Let us look at some example questions which Baker and Lorscheid’s framework ad-

dresses.

Example 3.0.1. Consider the polynomial

F (x) = (x+ 3)(x− 4)(x− 6) = 23 · 32 − 2 · 3x− 7x2 + x3.

The sign sequence of the coefficients is +,−,−,+ and the signs of the roots are −,+,+.

Descartes’s rule of signs says that after removing any zeroes from the coefficient sequence,

the number of positive roots we should expect is equal to the number of adjacent pairs of
1The term “algebra” is used in this chapter in the broad sense of a set with some distinguished elements,

operations and relations.
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opposite signs in the coefficient sequence.

For the number of negative roots, we look at F (−x). So if there are no zero coefficients,

then the number of negative roots we expect is equal to the number of adjacent pairs of

identical signs in the coefficient sequence. Moreover, this bound is sharp so long as all the

roots are real.

Baker and Lorscheid consider this question over the hyperfield of signs. Specifically, if

we take the polynomial f = [1] + [−1]x+ [−1]x2 + [1]x3 over the hyperfield of signs, then

their multiplicity operator (3.0.13) gives multS[1](f) = 2 and multS[−1](f) = 1. ♢

Example 3.0.2. Next, consider the same polynomial but with the 2-adic or 3-adic valuation.

Here we make a scatter plot of (c, vp(c)) for each coefficient c and p ∈ {2, 3} and then take

the lower convex hull as shown in Figure 3.1.

slope −2

slope −1
slope −1

Figure 3.1: Newton polygons of (x+ 3)(x− 4)(x− 6) in Q2 and Q3 respectively

Newton’s Polygon Rule says that the number of roots r with vp(r) = k is equal to the

horizontal width the edge with slope −k (i.e. its length after projecting to the x-axis). Thus,

for p = 2, the valuations of the roots are 0, 1, 2 and for p = 3 they are 0, 1, 1.

Likewise, if we consider the polynomials 3 + 1x+ 0x2 + 0x3 and 2 + 1x+ 0x2 + 0x3

over the tropical hyperfield (T), Baker and Lorscheid’s multiplicity operator, multT, gives

the numbers above. For example, multT1 (2 + 1x+ 0x2 + 0x3) = 2. ♢

In this chapter, we will look at how their multiplicity operator works in the context of

a tropical extension. The most common and natural examples of tropical extension are as

follows: take K/G to be a hyperfield coming from a quotient, and form a field of series

over K (e.g. Laurent or Puiseux series). Then quotient by the group of series whose leading
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coefficient belongs to G. For example, if the hyperfield is R/R>0, then the equivalence

classes in this tropical extension are [0] and {[±tn] : n ∈ Γ}, where the ordered group Γ

depends on what sort of series we use. Arithmetic in this hyperfield is a combination of the

arithmetic of signs and of non-Archimedean absolute values and is described in detail in

[Gun22a].

We also address so-called stringent hyperfields—a term introduced by Nathan Bowler

and Ting Su [BS21]. A hyperfield is stringent if a ⊞ b is a singleton whenever a ̸= −b.

Stringent hyperfields are the next simplest form of hyperfields after fields. We show that for

a polynomial over a stringent hyperfield, the sum of the multiplicities of all roots is bounded

by the polynomial’s degree (Corollary 3.E).

3.0.1 Structure of the chapter and a rough statement of the results

In this chapter, the primary type of algebra are idylls—a generalization of fields which con-

sists of a monoid B• describing multiplication and a proper ideal NB ⊆ N[B•] describing

addition. To describe these algebras, it will be convenient to talk about the larger category

of ordered blueprints introduced by Lorscheid [Lor18c; Lor18a; Lor12; Lor18b; Lor15]

which describe addition through a preorder on N[B•]. An Euler diagram of the relationships

between these categories is show in Figure 3.2.

Idyllic Ordered Blueprints (ideal in N[B•])

Idylls (field-like and have additive inverses)

Whole Idylls (pairs of elements have sums)

Pastures (three-term relations and fusion)

Hyperfields Partial Fields

Fields

Figure 3.2: Euler diagram of relationships between sub-categories of ordered blueprints
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We will first state some rough definitions and results here, giving as many definitions as

we reasonably can. A more thorough description of ordered blueprints and idylls is given

in section 3.1. In section 3.2, we define polynomial extensions and tropical extensions

and discuss Newton polygons and initial forms. In section 3.3, we finish describing the

theory of polynomials and multiplicities, factorization and multiplicities. In section 3.4, we

show that tropical extensions for hyperfields (after Bowler and Su [BS21]) are a special

case of tropical extensions of idylls. In section 3.5, we prove Theorems A, B, C which

concern initial forms and lifting. In section 3.6, we give some examples and corollaries

connecting this work to previous results and prove Theorem D and Corollary E concerning

the degree bound. In Appendix A, we record some division algorithms which have appeared

in [BL21a], [Gun22a] and [AL21].

Let us begin with a description of an ordered blueprint. This is an algebraic structure

consisting of two parts: a multiplicative and additive structure. Multiplication is defined

by a monoid (B•, 0B, 1B, ·B) with identity 1B and an absorbing element 0B. The additive

structure is defined by an additive and multiplicative preorder among formal sums over

B• [Lor15].

Within the category of ordered blueprints, one has what are named here idyllic ordered

blueprints, for which this preorder is entirely described by an ideal NB := {
∑
ai ∈ N[B•] :

0 ⩽
∑
ai}. The category of idyllic ordered blueprints is, morally speaking, the smallest

category containing hyperfields, partial fields, and polynomial extensions. We work entirely

within this category, and often within the sub-subcategory of field-like objects which we

call idylls.

Definition 3.0.3. An idyll B, is a pair (B•, NB), which consists of a monoid B• =

(B•, 0B, 1B, ·B) together with a proper ideal NB of N[B•], which is “field-like” in the

sense that:

• 0B ̸= 1B,
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• B× := B• \ {0B} is a group,

• there exists a unique ϵB ∈ B• such that ϵ2B = 1 and 1 + ϵB ∈ NB.

NB is called the null-ideal of B and B• and B× are called the underlying monoid and group

of units, respectively.

A first example of an idyll is the idyll associated to a field.

Example 3.0.4. Let K be a field and let K• = (K, 0K , 1K , ·K) be the multiplicative monoid

of K. Then we can define NK as the ideal of all formal sums whose evaluation in K is

0. ♢

Next, we have the idylls associated to the rules of Descartes and Newton. More examples

of idylls will be given in section 3.1.

Example 3.0.5. The idyll of signs or sign idyll, S, has underlying monoid S• = {0, 1,−1}

with the standard multiplication. The null-ideal of S is the set consisting of the empty sum,

together with all formal sums that include at least one 1 and at least one −1. In other words,

a formal sum of signs
∑
si is in NS if and only if there exists real numbers xi such that

sign(xi) = si and
∑
xi = 0 in R. ♢

Example 3.0.6. The tropical idyll, T, is the idyll whose underlying monoid is (R ∪

{∞},∞, 0,+), where ∞ is an absorbing element for the monoid. The null-ideal, NT, is the

set of all formal sums where the minimum term (in the usual ordering) appears at least twice

in the sum. In other words, a formal sum of valuations
∑
γi is in NT if and only if there is a

valued field (K, v) containing elements xi such that v(xi) = γi and
∑
xi = 0 in K.

More generally, to every ordered abelian group Γ, we associate an idyll Γidyll by the

same construction. For instance, T = Ridyll. ♢

We now introduce the concept of a tropical extension. The classical analogue of this is

to take a field K and form the field of Laurent series or Puiseux series in t over K. This
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gives us a t-adic valuation where the residue field is K. Likewise, we are here forming a

larger idyll with a valuation and whose “residue idyll” is the idyll we start with. We leave

some categorical constructions to subsection 3.1.3.

Definition 3.0.7. If B is an idyll with multiplicative group B×, then a tropical extension of

an ordered Abelian group Γ by B is an idyll C with some additional properties. First, there

are morphisms B ι−→ C
v−→ Γidyll which induce a short exact sequence of groups:

1 → B× ι•−→ C× v•−→ Γ → 1.

Second, the exactness of the sequence of groups must extend to the ordered blueprints, i.e.

im(ι) = eq(v, 1). Lastly, we require that NC has the property that
∑
ci ∈ NC if and only if∑

I ci ∈ NC , where I = {i : v•(ci) is minimal}.

With a slight abuse of notation, we will write C ∈ Ext1(Γ, B) to mean that C is a

tropical extension of Γ by B.

Remark 3.0.8. Tropical extensions appear in the work of Akian, Gaubert, and Guterman for

semirings with a symmetry (negation) [AGG14] as well as in the work of Rowan concerning

the more general setting of “semiring systems” [Row22].

For (skew) hyperfields, tropical extensions appear in the work of Bowler and Su as a

semidirect product [BS21]. Some examples of this are as follows.

Example 3.0.9. The most basic example of a tropical extension is the tropical idyll itself,

which fits into an exact sequence

1 → K× → T× ∼−→ R → 1. ♢

Example 3.0.10. More generally, let Tm = (Rm,≤lex)
idyll be the rank-m tropical idyll,

which is defined the same way as T but using (Rm,≤lex) in place of (R,≤). For all m,n,
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we have a tropical extension

1 → T×
m → T×

m+n → Rn → 1. ♢

Example 3.0.11. The tropical real idyll, TR, is the extension

1 → S× → TR× → R → 1.

Here TR• = {±tγ : γ ∈ R} ∪ {0} with multiplication given by s1tγ1 · s2tγ2 = (s1s2)t
γ1+γ2

where si ∈ {±1} are signs that multiply in the usual way.

The null-ideal, NTR, is the set of all formal sums
∑
sit

γi such that if I = {i :

γi is minimal} then
∑

I si ∈ NS. I.e. among the coefficients {si : i ∈ I}, there is at least

one +1 and at least one −1. The tropical real idyll is described further in [Gun22a]. ♢

Similar to tropical extensions, we can define polynomial extensions over idylls and

define a recursive multiplicity operator for roots of these polynomials.

Definition 3.0.12. We say that f factors into (x− a)g if f − (x− a)g belongs to the null

ideal of B[x]. This is equivalent to saying that the degree d terms of f − (x− a)g belong to

xdNB for all d.

We have the following definition of a multiplicity operator for idylls, which appears as

Definition 1.5 of [BL21a] for polynomials over hyperfields.

Definition 3.0.13. Let B be an idyll, let f ∈ B[x] be a polynomial and let a ∈ B•. The

multiplicity of f at a is

multBa (f) = 1 + maxmultBa (g),

where the maximum is taken over all factorizations of f into (x− a)g, or multBa (f) = 0 if

there are no such factorizations.

We will define a generalization of leading coefficients and initial forms for tropical

extensions. Specifically, we generalize two operators from the classical setting. First,
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if c =
∑
ait

i ∈ C((t))× is a nonzero Laurent series, then lc•(c) = ai0 ∈ C, where

i0 = min{i : ai ̸= 0}. Second, if f =
∑
cix

i ∈ C((t))[x] and w ∈ Z, then inw(f) =∑
I lc

•(ci)x
i ∈ C[x], where I = {i : vt(ci) + iw is minimal} and vt : C((t)) → Z ∪ {∞}

is the t-adic valuation.

For the main theorems, we need one more axiom. We define a whole idyll to be an

idyll for which every pair of elements a, b ∈ B• has at least one ‘sum’ c ∈ B• for which

a + b − c ∈ NB. The class of whole idylls includes fields and hyperfields, but excludes

partial-fields which are not themselves fields. Additionally, let us be clear that a “polynomial”

in this chapter is not allowed to have multiple terms with the same degree, so x+ x2 + x5 is

a polynomial but x+ x+ x is not.

With this in mind, the main theorem for split extensions (having a splitting Γ → C×, γ 7→

tγ) is the following.

Theorem 3.A. Let B be a whole idyll and let C = B[Γ] be a split tropical extension of Γ by

B. Then for every polynomial f ∈ C[x] and a ∈ C• with valuation γ,

multCa (f) = multBlc•(a)(inγ(f)).

With some slight modification to the ideas of initial forms, we extend this result to the

non-split case as follows.

Theorem 3.B. Let B be a whole idyll and let C ∈ Ext1(Γ, B) be a tropical extension of Γ

by B. Let f ∈ C[x] be a polynomial and let a ∈ C• be a root of f . Then

multCa (f) = multBlc•(a)(ina(f)).

In proving this theorem, we will show the following result. Notation is the same as in

the previous theorem.
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Theorem 3.C. Any factorization of ina f into (x− 1)g can be lifted to a factorization of f

into (x− a)g̃ such that ina g̃ = g.

Example 3.0.14. If f is a tropical polynomial, then its multiplicity at w ∈ T× is the same

as the multiplicity of the initial form inw f , and we will see in Example A.0.1 that this is the

horizontal length of the edge in the Newton polygon of f with slope −w, as described in

Example 3.0.2. ♢

This example shows how one of Baker and Lorscheid’s theorems [BL21a, Theorem D]

is a special case of ours, and this will also provide an alternative proof of their theorem

which we will see in section 3.6.

Example 3.0.15. The ordinary generating function of the Catalan numbers satisfies the

equation f(C) = 1− C + xC2 = 0. This is a polynomial in C with coefficients in R[x] ⊂

R((x)). The two initial forms of f are in0 f = 1−C and in−1 f = −C+C2 = −C(1−C).

The initial form in0 f has one positive root, and therefore Theorem 3.A tells us to expect

one positive root with valuation 0. Likewise, in−1 f = −C + C2 has one positive root and

therefore we should also expect one positive root with valuation −1. This all agrees with

the explicit solutions we can compute:

C1 = 1 + x+ 2x2 + 5x3 + · · · , C2 =
1

x
− 1− x− 2x2 − · · · . ♢

In section 3.6, we show that tropical extension preserves the property of having the sum

of multiplicities be bounded by deg f for all polynomials f ∈ B[x]. This gives some partial

understanding to a question asked by Baker and Lorscheid about which hyperfields have

this property.

Definition 3.0.16. We say that a whole idyll B satisfies the degree bound if for every

polynomial f ∈ B[x], ∑
b∈B•

multBb f ≤ deg f.
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Theorem 3.D. If B satisfies the degree bound and C ∈ Ext1(Γ, B), then C satisfies the

degree bound.

Finally, Bowler and Su have a classification of stringent hyperfields [BS21, Theo-

rem 4.10]. A hyperfield is stringent if every sum a⊞ b is a singleton unless b = −a. Bowler

and Su’s classification says that a hyperfield is stringent if and only if it is a tropical extension

of a field, of K, or of S. This gives us the following corollary.

Corollary 3.E. Every stringent hyperfield satisfies the degree bound.

By [BL21a, Proposition B], a corollary of this degree bound is that if φ : K → C is a

morphism from a field K to C, then

multCc f =
∑

a∈φ−1(c)

multKa F

for all polynomials f ∈ C[x]. In particular, this is true for every stringent hyperfield

(Corollary 3.6.5).

3.0.2 Relationship to other papers

There are two papers which have a close relationship with this chapter. First is the author’s

previous paper [Gun22a], which proves Theorems 3.A and 3.C but only for the real tropical

hyperfield TR = S[R]. The current chapter was developed in the editing and revision

process for that paper and generalizes the previous paper.

Specifically, here we consider tropical extensions of any rank as well as extensions

of any (whole) idyll, not just the extension S → TR. Theorems 3.A, 3.B, 3.C generalize

one of the main theorems of this previous paper [Gun22a, Theorem A]. Theorem 3.D and

Corollary 3.E are entirely new to this chapter. On the other hand, there are a few things

covered in the first paper but not in the current chapter:

1. The first paper spends more time discussing properties of TR and what it means to
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have a morphism from a field K to TR (i.e. to have a compatible valuation and total

order on K) [Gun22a, Section 2.2.1].

2. The first paper gives a proof of the multiplicity formula for fields with a morphism to

TR in the language of fields—in particular without using the result for the hyperfield

TR [Gun22a, Section 3].

3. There is a weak lifting theorem given a polynomial over TR to a polynomial over the

field of Hahn series R[[tR]] having the same number of roots whose leading coefficient

is real and positive [Gun22a, Theorem 5.4].

The second paper that has close similarities is that of Marianne Akian, Stéphane Gaubert

and Hanieh Tavakolipour [AGT23]. They also consider more general tropical extensions

than just S → TR. In their paper, they work with a class of algebras introduced by Rowan,

called semiring systems [Row22]. These bear some similarities to ordered blueprints, but the

translation is opaque. Akian, Gaubert and Rowan give some comments about the differences

and similarities [AGR22, Section 5.1], but no direct translation has yet been described. Both

frameworks have interest, as well as different connections and potential future development.

Within Rowan’s framework, Akian, Gaubert, and Tavakolipour prove a version of

Theorems 3.A and 3.B using similar techniques (initial forms) [AGT23, Theorem 5.11].

Their paper also greatly extends the weak lifting theorem [Gun22a, Theorem 5.4] by proving

that multiplicities over semiring systems analogous to the idylls S[Γ] can be lifted to any

real closed field [AGT23, Theorem 7.8] (and the roots are real rather than just having a

series whose leading coefficient is real).
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3.1 Idylls and Ordered Blueprints

Several interrelated ring-like and field-like algebraic theories have been used as a framework

for F1 geometry [Lor18a], matroid theory [BB19; BL21b], and polynomial multiplicities

[BL21a] among other uses. One such field-like algebra is a hyperfield, wherein the sum of

two elements is a nonempty set. Hyperfields have a lot of axioms which largely mirror their

classical counterparts and these are described in [BL21a] as well as the author’s previous

paper [Gun22a].

In this chapter, we work with a generalization of fields and hyperfields called idylls,

which also have simpler axioms than their hyperfield counterparts. To start, fix a monoid B•

which one can think of as generalizing the multiplicative structure of a ring.

Definition 3.1.1. For us, monoids have two distinguished elements: 0 and 1, and the

following axioms:

• multiplication is commutative and associative,

• 1 is a unit: 1 · x = x for all x,

• 0 is absorbing: 0 · x = 0 for all x.

These are also called pointed monoids or monoids-with-zero in the literature.

Second, we form the free semiring, N[B•], which is a quotient of the semiring of finitely
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supported formal sums by the ideal ⟨0⟩. I.e.

N[B•] :=
{
∑n

i=1 xi : xi ∈ B•}
{0, 0 + 0, 0 + 0 + 0, . . . }

.

Definition 3.0.3. An idyll B, is a pair (B•, NB), which consists of a monoid B• =

(B•, 0B, 1B, ·B) together with a proper ideal NB of N[B•], which is “field-like” in the

sense that:

• 0B ̸= 1B,

• B× := B• \ {0B} is a group,

• there exists a unique ϵB ∈ B• such that ϵ2B = 1 and 1 + ϵB ∈ NB.

NB is called the null-ideal of B and B• and B× are called the underlying monoid and group

of units, respectively.

Remark 3.1.2. For some purposes, it is enough to just assume that NB is closed under

multiplication by elements in B• rather than requiring it to be an ideal. Such algebras

are called tracts and are used, for instance, in the work of Baker and Bowler on matroids

[BB19].

3.1.1 Ordered Blueprints

One reason to prefer the stronger notion of idylls is because these are special cases of Oliver

Lorscheid’s theory of ordered blueprints [Lor18c; Lor18a; Lor12; Lor18b; Lor15]. We can

think about these null-ideals as a “1-sided relation” 0 ⩽ x1 + · · ·+ xn where we say which

sums should be “null” (although this does not mean we are considering the quotient by NB).

Ordered blueprints expand this 1-sided relation by allowing any preorder on N [B•] which is

closed under multiplication and addition. The next definition makes this precise.

Definition 3.1.3. An ordered blueprint B = (B•,⩽) consists of an underlying monoid B•

and a preorder or subaddition ⩽ onN [B•] satisfying for all a, b ∈ B• andw, x, y, z ∈ N[B•]

77



• a ⩽ a (reflexive on B•)

• a ⩽ b and b ⩽ a implies a = b (antisymmetric on B•)

• x ⩽ y and y ⩽ z implies x ⩽ z (transitive)

• x ⩽ y implies x+ z ⩽ y + z (additive)

• w ⩽ x and y ⩽ z implies wy ≤ xz (multiplicative)

• 0 ⩽ (empty sum) and (empty sum) ⩽ 0

The notation x ∈ B means x ∈ N[B•].

Remark 3.1.4. The relation ⩽ is only necessarily antisymmetric on B•. If we identify all

formal sums x, y ∈ N[B•] such that x ⩽ y and y ⩽ x, the quotient is a new semiring

which is denoted B+. The subaddition ⩽ descends to a partial order (antisymmetric) on B+

[Lor18c, Section 5.4].

An equivalent theory of ordered blueprints can be described in terms of a partial order

on a semiring B+ which is generated by B•—meaning B+ is a quotient of N[B•]. In this

chapter, most of our generating relations will be of the form 0 ⩽ y so our preorders will

usually be partial orders as well.

Baker and Lorscheid define idylls as a partial order on B+ and take as an axiom that

the quotient map N[B•] → B+ is a bijection [BL21b, Definition 2.18]. Since idylls are the

primary class of objects for us, we will work with N[B•] directly.

Definition 3.1.5. We say that a preorder is generated by a collection S = {xi ⩽ yi : i ∈ I}

if it is the smallest preorder containing S.

Remark 3.1.6. There is a natural embedding of the category of idylls in the category of

ordered blueprints by letting ⩽ be the preorder generated by 0 ⩽
∑
ai for every

∑
ai ∈ NB .

We will use both ideal and preorder notation in what follows.
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We can also generalize idylls to a larger (but still proper) subcategory of ordered

blueprints. If idylls are field-like then idyllic ordered blueprints are their ring-like cousins.

We do not assume that idyllic ordered blueprints have additive inverses for the sole reason

that it allows us to call F1—which we will define shortly—an idyllic blueprint.

Definition 3.1.7. An ordered blueprint is idyllic if it is generated by relations of the form

0 ⩽
∑
xi. The idyllic part of an ordered blueprint B, is an ordered blueprint Bidyll obtained

by restricting to the relation generated by relations of the form 0 ⩽
∑
xi in B. We

will sometimes drop the word “ordered” to be less wordy and simply call these “idyllic

blueprints.”

If B is idyllic, we will again call NB = {
∑
xi ∈ N[B•] : 0 ⩽

∑
xi} the null-ideal

of B and call ⩽ a subaddition. This gives us a common language to talk about idylls and

idyllic blueprints.

Remark 3.1.8. There are other notions of positivity for ordered blueprints. In the language

of a partial order on a semiring B+ (Remark 3.1.4), an ordered blueprint is purely positive

if it is generated by relations of the form 0 ⩽
∑
xi [BL21b, Definition 2.18]. In this

language, an idyllic ordered blueprint is a purely positive ordered blueprint for which the

map N[B•] → B+ is a bijection.

Remark 3.1.9. There are two ways to embed a ring or a field R into the category of ordered

blueprints. For both embeddings, the underlying monoid is R• = (R, 0R, 1R, ·R). First, we

can embed R as Roblpr where the relation is given by
∑
xi ⩽

∑
yi if the evaluation of those

sums in R are equal. The second embedding is Ridyll = (Roblpr)idyll, where we restrict to

relations of the form 0 ⩽
∑
yi.

In other words, there is one embedding into the category of ordered blueprints and a

different embedding into the category of idyllic blueprints.

Example 3.1.10. The ordered blueprint F1 has F•
1 = {0, 1} as its underlying monoid,

with the usual multiplication. The relation on F1 is equality (equivalently it has an empty
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generating set). F1 is the initial object in the category of idyllic ordered blueprints and its

null-ideal is {0}. ♢

Example 3.1.11. The Krasner idyll K on {0, 1} is the idyll with null-ideal N[B•] \ {1} =

{1+1, 1+1+1, . . . }. The Krasner idyll is the terminal object in the category of idylls. ♢

Definition 3.1.12. If R is a ring or field and G is a subgroup of R×, then there is an idyll on

G• = G ∪ {0} which we call a partial field idyll. The null-ideal of G is the set of formal

sums whose image in R is zero.

These are called “partial” fields because the sum of two elements of G• may or may not

be in G• as well. Therefore addition is only partially defined.

Example 3.1.13. If G = {1,−1} = Z× then NG = ⟨1 + (−1)⟩. This is called the regular

partial field (idyll) and is denoted either F12 or F±
1 in the literature.

More generally, if G = µn ⊂ C× is the group of n-th roots of unity, then G forms an

idyllic ordered blueprint called F1n . This lacks additive inverses if n is odd, but is still

field-like. ♢

Definition 3.1.14. If K is a field and G is a subgroup of K× then there is an idyll on K/G

called a hyperfield idyll. The null-ideal NK/G is the set of sums of equivalence classes

[a1] + · · · + [an] for which there exists representatives xi ∈ [ai], i = 1, . . . , n for which

x1 + · · ·+ xn = 0 in K.

Remark 3.1.15. Partial fields and hyperfields are also thought about in terms of the sum

sets a ⊞ b := {c : a + b − c ∈ NB}. For partial fields, every sum is either empty or a

singleton. For hyperfields, every sum is non-empty. Fields, therefore, are the intersection of

partial fields and hyperfields.

Remark 3.1.16. All of the hyperfield (idyll)s named in this chapter are quotients of some

field by a multiplicative group, however there are hyperfields which are not of this form.
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Christos Massouros was the first to construct an example of such [Mas85]. For the purposes

of this chapter, it is sufficient to think only about quotient hyperfields.

For quotients, the sum sets defined in the previous remark can also be defined for an

arbitrary number of summands by

⊞
i

[ai] = {a′i : a′i ∈ [ai]}.

If the hyperfield is not a quotient, then we need to define repeated hyperaddition monadi-

cally:

• identify a with {a},

• flatten sums, so

a0 ⊞ (a1 ⊞ · · ·⊞ an) =
⋃

{a0 ⊞ t : t ∈ a1 ⊞ · · ·⊞ an}.

Defining hyperfields as idylls (Definition 3.4.1) skips having to talk about the monadic laws.

The monadic laws are closely related to a fissure rule (Remark 3.3.6) for pastures, which

we will define later on. We will also reference the monadic laws in section 3.4 where we

define hyperfields as special kinds of pastures.

Example 3.1.17. As an example, the Krasner idyll K is a quotient K/K× for any field K

other than F2. The idyll of signs S is the quotient R/R>0. The tropical idyll is the quotient

of a valued field K with value group R by the group of elements with valuation 0.

More generally, if the value group of K is any ordered Abelian group Γ, then the same

quotient K/v−1(0) gives an idyll structure on Γ which we will see again in Definition 3.1.25.

This is a tropical idyll but not the tropical idyll—a term reserved for Γ = R. Instead, we

will call these OAG idylls. ♢

Example 3.1.18. The idyll of phases or phase idyll P, is the hyperfield idyll on the quotient

C/R>0. A sum of phases
∑
eiθk belongs to NP if there are magnitudes ak ∈ R>0 for which
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∑
ake

iθk = 0. Equivalently, we can define the null-ideal using convex hulls as

NP =

{∑
k

eiθk : 0 ∈ int
(
conv

k

(
eiθk
))}

,

where int(convk(eiθk)) is the interior of the convex hull relative to its dimension. E.g. if the

convex hull is a line segment, then the interior is a line segment without the endpoints. ♢

Remark 3.1.19. As Bowler and Su point out in a footnote [BS21, page 674], there are

actually two phase idylls/hyperfields: the quotient P = C/R>0 as defined above, and the

one that Viro originally defined [Vir10]. The difference is in whether you require 0 be in

the interior of convk(eiθk) (our definition) or if it is allowed to lie on the boundary (Viro’s

definition).

3.1.2 Morphisms of Ordered Blueprints

Definition 3.1.20. If B,C are two ordered blueprints, a (homo)morphism f : B → C

consists of a morphism of monoids f • : B• → C• such that the induced map f : B → C is

order-preserving. In particular, for all x, y, xi, yi ∈ B•

• f •(xy) = f •(x)f •(y)

• f •(0B) = 0C

• f •(1B) = 1C

• if
∑
xi ⩽

∑
yi then f(

∑
xi) ⩽ f(

∑
yi)

Definition 3.1.21. A morphism of idylls is a morphism of their corresponding ordered

blueprints. I.e. it is a morphism of monoids such that f(NB) ⊆ NC .

Valuations

Classically, a (rank-1) valuation on a field K is a map v : K → R ∪ {∞} such that

82



• v(0) = ∞,

• v restricts to a group homomorphism F× → (R,+),

• and for every a, b ∈ F , we have v(a+ b) ≥ min{v(a), v(b)}.

In our language, a valuation in this sense is simply a morphism from a field K (viewed as

an idyll) to the tropical idyll T.

We can also substitute R with any ordered Abelian group (OAG).

Definition 3.1.22. An ordered Abelian group (OAG) is an Abelian group (Γ,+) with a total

order ≤ for which a ≤ b implies a+ c ≤ b+ c for all a, b, c.

Example 3.1.23. On Rn, there is a lexicographic or dictionary order ≤lex defined induc-

tively by (a1, . . . , an) ≤lex (b1, . . . , bn) if either a1 < b1 or a1 = b1 and (a2, . . . , an) ≤lex

(b2, . . . , bn). We will make use of this order in subsubsection 3.2.2 ♢

Definition 3.1.24. The rank of an OAG Γ, is the smallest number n such that Γ admits an

order-preserving embedding in (Rn,≤lex). The term “higher-rank” means any rank greater

than 1.

Definition 3.1.25. The idyll Γidyll is the idyll on Γ• = Γ ∪ {∞} where

• ∞ is the absorbing element

• 0 is the unit element (writing things additively)

•
∑
ai ∈ NΓ if and only if the minimum term appears at least twice

We will call this an OAG idyll.

Definition 3.1.26. In our framework, a valuation v on an idyllic ordered blueprint B, is a

morphism v : B → Γidyll for some ordered Abelian group Γ. The letter v will be reserved

for a valuation of some kind and usually for the valuation C → Γidyll which appears in the

definition of a tropical extension.
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Now we will check that valuations as we have just defined, agree with the usual notion

of a Krull valuation as well as illustrate some properties of valuations.

Proposition 3.1.27. If R is a ring and v : Ridyll → Γidyll is a valuation, then

(V1) v• : R• → Γ• is a monoid homomorphism,

(V2) v•(0R) = ∞,

(V3) if un = 1R for some n ≥ 1 then v•(u) = 0,

(V4) v•(a+R b) ≥ min{v•(a), v•(b)} for all a, b ∈ R.

(V5) if v•(a) ̸= v•(b) then v•(a+R b) = min{v•(a), v•(b)}.

Conversely, a map v• : R• → Γ• with these properties induces a valuation v : Ridyll →

Γidyll.

Proof. Properties (V1) and (V2) follow by definition and Property (V3) follows from

Property (V1).

For Property (V4), if c = a +R b in R, then 0 ⩽R a + b − c in Ridyll. Therefore,

v(a + b − c) = v•(a) + v•(b) + v•(c) ∈ NΓ and this, by definition, means that the

minimum of v•(a), v•(b), v•(c) occurs at least twice. It is impossible therefore, to have

v•(c) < min{v•(a), v•(b)}.

Property (V5) follows because if the minimum of v•(a), v•(b), v•(a +R b) needs to

occur at least twice and v•(a) ̸= v•(b), then v•(a+R b) must be equal to the minimum of

v•(a), v•(b).

Conversely, suppose v• satisfies these properties and 0 ⩽
∑
xi in Ridyll—meaning∑

R xi = 0R in R and we may assume that at least one of the xi’s are nonzero or else

there is nothing to show. Given this, we know that the minimum of the quantities v•(xi)

occurs at least twice because otherwise v•(
∑

R xi) = min v•(xi) by property (V5). But

v•(
∑

R xi) = v•(0R) = ∞ ̸= min{v•(xi)}. So we conclude that the minimum occurs at

least twice and hence 0 ⩽
∑
v•(xi) in Γidyll.
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Remark 3.1.28. A more general definition of valuations exists where the source and target

can be any ordered blueprint [Lor15, Section 3], [Lor18c, Chapter 6].

3.1.3 Images, Equalizers and Subblueprints

We will now define a few categorical constructions which are useful in our constructions—

particularly for describing tropical extensions.

Definition 3.1.29. A subblueprint B of an ordered blueprint C is a submonoid B· ⊆ C•,

such that if
∑
xi ⩽

∑
yi in B then

∑
xi ⩽

∑
yi in C. The subblueprint is full if the

converse holds: if
∑
xi and

∑
yi ∈ B then

∑
xi ⩽

∑
yi in C if and only if

∑
xi ⩽

∑
yi

in B.

Remark 3.1.30. A full subblueprint is determined entirely by the submonoid B• ⊆ C• and

we will call this an induced subblueprint.

Definition 3.1.31. If f : B → C is a morphism of ordered blueprints, its image is the

subblueprint im(f) on the monoid im(f)• = f(B•) ⊆ C•, where
∑
f •(xi) ⩽

∑
f •(yi) in

im(f) if and only if
∑
xi ⩽

∑
yi in B.

Definition 3.1.32. Given two maps f, g : B → C, their equalizer, eq(f, g), is the induced

subblueprint of B on eq(f, g)• = {x ∈ B• : f(x) = g(x)}.

Definition 3.1.33. If v : C → Γidyll is a valuation on an idyll C, we define a morphism

1 : C → Γidyll by 1•(x) = 1Γidyll if x ̸= 0C and 1•(0C) = 0Γidyll . This is a morphism

because idylls have proper null-ideals, meaning if
∑
xi ∈ NC then there are at least two

nonzero xi’s, and so 1 (
∑
xi) ∈ NΓ since the minimum occurs at least twice.

We can also describe the morphism 1 as the composition of the sequence C v−→ Γidyll →

K → Γidyll.
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3.2 Polynomial and Tropical Extensions

Let us turn our attention next to generalizing polynomial rings to polynomials over idylls.

Remember that additive relations in idylls are encoded by an ideal in some free semiring.

The terms in those additive relations form a monoid. This suggests the following definition.

Definition 3.2.1. Let B be an idyll with monoid B• and null-ideal NB ⊂ N[B•]. The

polynomial extension of B is an idyllic ordered blueprint, which we call B[x]. Its underlying

monoid is

B[x]• = {bxn : b ∈ B•, n ∈ N}/⟨0xn ≡ 0 : n ∈ N⟩

with multiplication given by (bxm)(cxn) = (bc)xm+n. The null-ideal of B[x] is the ideal in

N[B[x]•] which is generated by NB.

Definition 3.2.2. When we say a polynomial, we mean that which might otherwise be called

a pure polynomial. A (pure) polynomial is an element of N[B[x]•] for which there is at

most one term in each degree. E.g. x+ x2 + x5 is a polynomial but x+ x+ x is not.

Remark 3.2.3. The idea to use ordered blueprints as a framework for polynomial algebras

was mentioned in Baker and Lorscheid’s work [BL21a, Appendix A]. The ordered blueprint

construction rectifies some shortcomings that arise from trying to create algebras over

hyperfields naı̈vely such as failing to be associative or free.

A related construction to polynomial extensions is that of a split tropical extension.

Definition 3.2.4. Let B be an idyll and let Γ be an OAG. Form the pointed group

B[Γ]• = {btγ : b ∈ B•, γ ∈ Γ}/⟨0tγ ≡ 0 : γ ∈ Γ⟩

with multiplication given by (b1t
γ1)(b2t

γ2) = (b1b2)t
γ1γ2 .

The null-ideal of B[Γ] is the set of all formal sums
∑
ait

γi such that if we let I = {i :

γi is minimum} then
∑

I ai ∈ NB.
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Split tropical extensions come with a natural valuation map v : B[Γ] → Γidyll given by

v•(btγ) = γ. For split tropical extensions, there is a splitting Γ → B[Γ]× given by γ 7→ tγ .

Remark 3.2.5. Going forward, we will often drop the ‘t’ from the notation and simply write

bγ instead of btγ and 1γ instead of tγ . This helps avoid confusing B[Γ] with a polynomial

extension since B[Γ] has some additional relations on it beyond those of just polynomials.

More generally, a tropical extension is any idyll which fits into an exact sequence with

B and Γ and with similar rules about the null-ideal as for split extensions.

Definition 3.0.7. If B is an idyll with multiplicative group B×, then a tropical extension of

an ordered Abelian group Γ by B is an idyll C with some additional properties. First, there

are morphisms B ι−→ C
v−→ Γidyll which induce a short exact sequence of groups:

1 → B× ι•−→ C× v•−→ Γ → 1.

Second, the exactness of the sequence of groups must extend to the ordered blueprints, i.e.

im(ι) = eq(v, 1). Lastly, we require that NC has the property that
∑
ci ∈ NC if and only if∑

I ci ∈ NC , where I = {i : v•(ci) is minimal}.

With a slight abuse of notation, we will write C ∈ Ext1(Γ, B) to mean that C is a

tropical extension of Γ by B.

Remark 3.2.6. From subsection 3.1.3, to say that im(ι) = eq(v, 1) means that 0 ⩽
∑
xi

in B if and only if 0 ⩽
∑
ι•(xi) in eq(v, 1) ⊆ C. I.e. im(ι) is a full subblueprint of C.

Because of this, we can safely make the assumption that B• ⊆ C• and ι is the identity.

Remark 3.2.7. Tropical extensions of idylls are closely related to tropical extensions

for semiring with a symmetry [AGG14] or for semiring systems [Row22; AGT23]. For

hypergroups and (skew) hyperfields, tropical extensions appear as a semidirect product in

the work of Bowler and Su [BS21].
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Remark 3.2.8. Tropical extensions have “levels” Bγ = {c ∈ C : v•(c) = γ}, which are

not-necessarily-canonically isomorphic to B×, and B0 which is canonically isomorphic

to B×. The relations on Bγ are uniquely determined by the torsor action B0 ×Bγ → Bγ .

(See also subsubsection 3.2.2.)

Additionally, to say that a relation
∑
ai ∈ NC holds if and only if it holds among the

minimal valuation terms, means that if we have a sum like a−a ∈ NC then a−a+b ∈ NC for

any element b of larger valuation. In other words, the sum set a⊞ (−a) from Remark 3.1.15

contains every element whose valuation is strictly larger than v•(a).

These properties about levels and sum sets are the basis for how Bowler and Su describe

their semidirect product. We will give a formal proof of this equivalence in section 3.4.

Remark 3.2.9. By Bowler and Su’s classification [BS21, Theorem 4.17], if B is either K or

S then every tropical extension by B is split.

Example 3.2.10. The tropical idyll T = K[R] is a split tropical extension of R by K. The

only caveat is a slight change of notation: we defined elements of T× as real numbers but

we defined elements of K[R]× as being of the form 1γ where γ is a real number.

For instance, the sum 0 + 0 + 1 in NT corresponds to 10 + 10 + 11 in K[R]. This

is in NK[R] because if we take the sum of the coefficients of the minimum terms, we get

1 + 1 ∈ NK. ♢

Example 3.2.11. Every OAG idyll is a tropical extension in a natural way: Γidyll = K[Γ]

(again with a change of notation). For example, we have higher-rank tropical idylls such as

Tn := (Rn,≤lex)
idyll = K[Rn]. Moreover, there is a natural isomorphism Tm[R

n] = Tm+n

(Example 3.0.9). ♢

Example 3.2.12. Extensions by S give signed tropical extensions. For instance, TR = S[R]

is the tropical real idyll/hyperfield which was first introduced by Oleg Viro [Vir11].

The null-ideal of TR is given by sums where the minimum terms appear at least twice

and with at least one positive and one negative term among them. E.g. t+ (−1)t+ t2 has
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one positive minimum term, t, and one negative minimum term, (−1)t. ♢

Example 3.2.13. Extensions by P give phased tropical extensions. For example, TP =

TC = P[R] is the tropical phase idyll or tropical complex idyll. This was also introduced

as a hyperfield by Viro (ibid.). ♢

Remark 3.2.14. For the tropical reals, there is a map sign : TR → S which gives the sign

of the leading coefficient. It is tempting to think that TR is isomorphic to the pullback

S×K T S

T K

but this is not the case. In S×K T, we have the relation 0 ⩽ 10 + 10 + (−1)1 because its

images in S and T are relations. However, this is not a relation in TR since among the

terms of minimal valuation, they are all positive.

See [Lor18c, Section 5.5] for a discussion of various (co)limits in the category of ordered

blueprints.

3.2.1 Newton Polygons and Initial forms

Newton Polygons

Associated to polynomials over a tropical extension or over a valued field, is an object called

the Newton polygon. To define this, we require a rank-1 valuation v : B → T.

Definition 3.2.15. We define a lower inequality on R2 to be an inequality of the form

⟨u, x⟩ ≥ c for some c ∈ R and some u is in the upper half plane: u ∈ {(u1, u2) : u2 ≥ 0}.

Every lower inequality creates a halfspace H(u, c) = {x : ⟨u, x⟩ ≥ c}.

Given a set of points S ⊂ R2, its Lower Convex Hull is defined as the intersection of the

halfspaces containing S, where u = (u1, u2) is in the upper half plane:

LCH(S) =
⋂

{H(u, c) : S ⊆ H(u, c), u2 ≥ 0}.
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Definition 3.2.16. Let v : B → T be a valuation on B and let f ∈ B[x], f =
∑

I bix
i be a

polynomial. The Newton polygon of f is

Newt(f) = LCH ({(i, v•(bi)) : i ∈ I}) .

Additionally, by an edge of the Newton polygon, we will always mean a bounded edge.

Example 3.2.17. Consider the polynomial f = 2 + 1x+ 0x2 + 0x3 + 2x4 + 1x5 ∈ T[x],

where v : T → T is the identity. The Newton polygon of f is shown in Figure 3.3. ♢

Figure 3.3: Newton polygon of f in Example 3.2.17

3.2.2 Initial Forms

Now we will define a “leading coefficient” and initial form operator for tropical extensions.

First, for split extensions, we take the following definition.

Definition 3.2.18. For the split extension B[Γ], define lc• : B[Γ]• → B• by lc•(bγ) = b.

This does not induce a morphism of ordered blueprints (c.f. Remark 3.2.14).

If γ ∈ Γ, define inγ : B[Γ][x] → B[x] by

inγ

(∑
bγii x

i
)
=
∑
I

lc•(bγii )x
i

where I = {i : γi + iγ is minimal}.

Example 3.2.19. Consider the polynomial f = 2 + 1x+ 0x2 + 0x3 + 2x4 + 1x5 ∈ T[x]

from Example 3.2.17, whose Newton polygon is shown in Figure 3.3.
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The Newton polygon of f has edges of slope −1, 0, 1
2

and the corresponding initial

forms are in1 f = 1 + x + x2, in0 f = x2 + x3 and in−1/2 f = x3 + x6 ∈ K[x]. All other

initial forms of f are monomials. ♢

Newton Polygons for Higher-Rank

Consider a polynomial f =
∑
bix

i with coefficients in Tn = K[Rn] = (Rn,≤lex)
idyll,

where ≤lex is the lexicographic order from Example 3.1.23. Or, more generally, we could

have coefficients in B, where B is equipped with a valuation v : B → Tn. In the previous

section, we gave a definition of an initial form inγ(f) which covers this, but the connection

to Newton polygons is less clear. To figure out how to define this, we are going to consider

a sequence of rank-1 valuations using the natural identity Tn = Tn−1[R].

Define vn : Tn → T as the valuation on Tn−1[R]. Explicitly, given γ = (γ1, . . . , γn) ∈

(Rn,≤lex), we have vn(γ) = γ1. Let inv
γ denote the initial form operator with respect to an

extension B[Γ]
v−→ Γ. So, for example, invn

γ1
means we are considering Tn as an extension of

R by Tn−1 rather than as an extension of Rn by T0 = K. With this, we have the following

lemma.

Lemma 3.2.20. With the notation as above, we have

inv
γ(f) = inv1

γn(· · · in
vn−1
γ2

(invn
γ1
(f))).

Therefore, when we consider a higher-rank valuation, we are thinking about a sequence

of Newton polygons rather than one Newton polytope.

Proof. This is an inductive statement, so to simplify notation, we will use n = 2 to illustrate.

Let f =
∑

(ai, bi)x
i ∈ T2[x] and let γ = (λ, µ) ∈ T×

2 . Let I = {i : (ai, bi) +

i(λ, µ) is minimal} and let that minimal value be (λ0, µ0). Next, let I1 = {i : ai +

iλ is minimal} and let that minimal value be λ′0. First, we claim that λ′0 = λ0.
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If not, then we must have λ′0 < λ0 or else λ0 would be minimal minimal for I1 as

well. Now if (λ0, µ0) = (ai0 , bi0) + i0(λ, µ) and λ′0 = ai1 + i1λ, then by definition

(Example 3.1.23), it must be that λ′0 ≥ λ0 or else (ai1 , bi1) + i1(λ, µ) <lex (λ0, µ0) and this

contradicts minimality.

Now define I2 = {i ∈ I1 : bi + iµ is minimal}, and we have likewise that this minimal

value is µ0. I.e. we have I2 = I . Putting this together, we have

inv
(λ,µ) f =

∑
I

xi = inv2
µ

(∑
I1

bix
i

)
= inv2

µ (inv1
λ (f)).

If the coefficients were in B[Rn] rather than Tn = K[Rn], then everything works the

same by changing notation from
∑
γix

i =
∑

(1K)
γixi to

∑
cγii x

i.

Remark 3.2.21. Lemma 3.2.20 demonstrates that we can apply Theorem 3.A inductively by

considering a sequence of rank-1 extensions.

The Non-Split Case

If C ∈ Ext1(Γ, B) is a non-split extension, then the leading coefficient map is no longer

well defined because we can no longer simply divide by tγ . Instead, for every fixed element

c0 ∈ C× with v•(c) = γ, we get a map {c ∈ C× : v•(c) = γ} → B× by dividing by c0 and

this map depends on the choice of c0, i.e. this is a torsor for B×.

Definition 3.2.22. Let C ∈ Ext1(Γ, B) be a tropical extension. Because the sequence

B× → C× → Γ is exact, there is a natural identification of B× with the group B0 :=

{c ∈ C× : v•(c) = 0}. More generally, let us define Bγ = {c ∈ C× : v•(c) = γ}

and B∞ = {0C}. This gives a grading C• =
⋃

γ∈Γ• Bγ where multiplication is graded:

· : Bγ ×Bγ′ → Bγ+γ′ . In particular, the pairing B0×Bγ → Bγ makes Bγ into a B0-torsor.

We will define the leading coefficient map lc• : C• →
⋃

γ∈Γ• Bγ which literally is the

identity, but we give a name to this to keep the notation consistent. This also helps remind

us that the output is in a specific torsor for B.
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So now, instead of having initial forms with coefficients in B, the coefficients will be in

one of these torsors.

Definition 3.2.23. Let C ∈ Ext1(Γ, B) be a tropical extension and let f =
∑
cix

i ∈ C[x]

be a polynomial. Let a ∈ C be a root of f with valuation γ1 and let γ0 = min{v•(ci)+ iγ1}.

We will say that a corresponds to the line ℓ = {γ0 − iγ1 : i ∈ N}.

Let I = {i : v•(ci) = γ0 − iγ1}. We define the initial form with respect to a (rather than

with respect to γ1) as

ina(f) =
∑
i∈I

lc•(ci)(ax)
i ∈ Bγ0 [x].

Remark 3.2.24. For split extensions, we have two initial forms. First, we have inγ f ∈ B[x]

from Definition 3.2.18. Second, we have ina f ∈ Bγ0 [x] from Definition 3.2.23. These two

polynomials are related via the natural identification B× = B0 and the identity

inγ f = 1−γ0 in1γ f.

Additionally, if a = bγ , then

inbγ f(x) = in1γ f(bx).

3.3 Factoring Polynomials and Multiplicities over Idylls

We now investigate factoring and multiplicities. First, we will do this for B[x] and show

that these notions are an extension to idylls of the Baker-Lorscheid multiplicity operator

for hyperfields. Second, we will define this for Bγ0 [x] and we will see that all the ways to

identify Bγ0 ∼= B lead to the same multiplicities and factors.

3.3.1 Roots of Polynomials

There are two serviceable definitions of what it means for a polynomial to have a root.

Classically, we can say that f(x) has a root a if f(a) = 0 or if (x− a) | f(x). For idylls, we
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will take the latter as the definition and explain in which context the two definitions agree.

Definition 3.3.1. Let f(x) =
∑n

i=0 cix
i be a polynomial over an idyll B and let a ∈ B•. We

will say that a is a root of f if there exists a factorization 0 ⩽ f(x)− (x− a)g(x) for some

polynomial g(x) =
∑
dix

i. I.e. if 0 ⩽ ci − di−1 + adi for all i (treating the coefficients as

infinite sequences with a finite support).

Definition 3.3.2. It will be convenient to define a relation ≼ by x ≼ y if 0 ⩽ −x+ y. So

we will write factorizations as f(x) ≼ (x− a)g(x) and ci ≼ di−1 − adi.

There is a context in which Definition 3.3.1 is equivalent to 0 ⩽ f(a), called pastures.

There are a few equivalent definitions of pastures in the literature, we give one of them here.

Definition 3.3.3. An ordered blueprint is reversible if it contains an element ϵ = ϵB such

that ϵ2 = 1, we have the relation 0 ⩽ 1 + ϵ, and such that if a, b ∈ B•, x ∈ N[B•] then

a ⩽ b + x implies ϵb ⩽ ϵa + x. By [Lor18c, Lemma 5.6.34], ϵ is unique and so is any

additive inverse of a for any a ∈ B•. As with idylls, we will write −1 and −a instead of ϵ

and ϵa.

A pasture is a reversible ordered blueprint generated by relations of the form a ⩽ b+ c

with a, b, c ∈ B× as well as the relation 0 ⩽ 1 + (−1).

Remark 3.3.4. If B is a pasture, its idyllic part Bidyll satisfies an axiom known as fusion

where if a ∈ B• and x, y ∈ N[B•] then 0 ⩽ x+ a and 0 ⩽ y − a implies 0 ⩽ x+ y.

Proof. By reversibility, 0 ⩽ x+ a implies −a ⩽ x and 0 ⩽ y − a implies a ⩽ y. Adding

these together, we have

0 ⩽ (−a) + a ⩽ x+ y.

Remark 3.3.5. The fusion rule is discussed in detail in a paper of Baker and Zhang [BZ23].

It is possible to define a pasture as an idyll generated by three-term relations 0 ⩽ a+ b+ c

and fusion (the idyllic part of what we have just defined). Just looking at idylls generated by
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three-term relations but without the fusion axiom gives a nonequivalent definition of pasture

such as [BL21b, Definition 6.19].

Remark 3.3.6. If B is a pasture, then we can break apart longer relations into three-term

relations inductively. This procedure is known as fissure. If ai ∈ B• and a0 ⩽ a1 + · · ·+ an

then there exists a t ∈ B• for which a0 ⩽ a1 + t and t ⩽ a2 + · · ·+ an. A consequence of

fissure is that 0 ⩽ a+ b+ c if and only if −a ⩽ b+ c. A consequence of that consequence

is that we can recover a pasture from its idyllic part.

Because of this, we can also view pastures as a subcategory of idylls. Moreover, the

relation ≼ is the same as ⩽ for pastures.

For pastures, the two definitions of “a is a root of f” are equivalent. The proof of this is

a translation of Lemma A in [BL21a] to the language of pastures.

Proposition 3.3.7. If B is a pasture and f ∈ B[x] is a polynomial, then for any a ∈ B•,

0 ⩽ f(a) if and only if there exists a polynomial g ∈ B[x] for which f(x) ⩽ (x− a)g(x).

Proof. First, if a = 0 then f(0) = a0 and we have f(0) = a0 ⩾ 0 if and only if each term

in f(x) is a multiple of x and we can factor f(x) = xg(x).

Second, if a ̸= 0, then by Remark 3.3.6, f(a) ⩾ 0 means that there exists a sequence

t1, t2, . . . , tn where tn = an and

0 ⩽ b0 + t1 and ti ⩽ bia
i + ti+1, for i = 1, . . . , n− 1. (3.1)

In particular, we have the following sequence of inequalities:

0 ⩽ b0 + t1 ⩽ b0 + b1a+ t2 ⩽ · · · ⩽ b0 + b1a+ · · ·+ bn−1a
n−1 + an. (3.2)

Now, let us define a sequence c0, . . . , cn−1 by the equations −aici = ti+1 for i =
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0, . . . , n− 1. Then the inequalities in (3.1) say

0 ⩽ b0 − c0, and − ai−1ci−1 ⩽ bia
i − aici ⇐⇒ bi ⩽ ci − aci−1.

These are exactly the inequalities which say that f(x) ⩽ (x− a)g(x) where g(x) =
∑
cix

i.

Conversely, if we know that f(x) ⩽ (x − a)g(x), then we can go backwards and

construct a sequence ti such that the chain of inequalities in (3.2) hold.

3.3.2 Multiplicities

Let us return back to idylls and recall the definition of multiplicities.

Definition 3.0.13. Let B be an idyll, let f ∈ B[x] be a polynomial and let a ∈ B•. The

multiplicity of f at a is

multBa (f) = 1 + maxmultBa (g),

where the maximum is taken over all factorizations of f into (x− a)g, or multBa (f) = 0 if

there are no such factorizations.

Examples of factorizations are given in Appendix A.

Morphisms and multiplicities

The next task is to show that morphisms preserve factorizations and hence multiplicities

cannot decrease after applying a morphism. Additionally, we will verify that under isomor-

phism, multiplicities are the same, and we will apply this to define multiplicities for initial

forms.

Proposition 3.3.8. Let φ : B → B′ be a morphism between two idylls. Let f =
∑
bix

i ∈

B[x] be a polynomial, let a ∈ B• and let a′ = φ(a), b′i = φ(bi). Then

multBa (f) ≤ multB
′

a′ (φ(f)),
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where φ(f) =
∑
b′ix

i ∈ B′[x].

Lemma 3.3.9. A morphism φ : B → B′ induces a morphism φ : B[x] → B′[x] which is

multiplicative. I.e. if f ≼ gh then φ(f) ≼ φ(g)φ(h).

Proof. Let us use the notation a′ for φ(a). It is a simple exercise to verify that (axn)′ := a′xn

is a morphism between the two polynomial extensions B[x] and B′[x].

To see that this morphism is multiplicative, first break apart the relation on B[x] into a

collection of relations on B as follows:

∑
akx

k ≼
(∑

bix
i
)(∑

cjx
j
)

⇐⇒ ak ≼
∑
i+j=k

bicj for all k.

Now apply φ everywhere to obtain

a′k ≼
∑
i+j=k

b′ic
′
j for all k =⇒

∑
a′kx

k ≼
(∑

b′ix
i
)(∑

c′jx
j
)
.

This result was first stated for hyperfields in [Gun22a, Lemma 3.1]. Proposition 3.3.8

follows by applying this lemma to a sequence of factorizations of f of maximal length.

Next, we look at how monomial transformations interact with multiplicities.

Lemma 3.3.10. Let φ : B[x] → B[x] be a monomial transformation given by x 7→ cx.

Then for any polynomial f ∈ B[x] and a ∈ B,

multBa (φ(f)) = multBac(f).

Proof. The proof of this lemma is similar to the proof of Proposition 3.3.8. First, we see

that a factorization f(x) ≼ (x− ca)g(x) yields a factorization

f(cx) ≼ (cx− ca)g(cx) = (x− a)[cg(cx)].

Then, we apply induction to obtain multBac(f) ≤ multBc (φ(f)). The opposite inequality
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follows by considering the inverse transformation x 7→ c−1x.

Definition 3.3.11. Let C ∈ Ext1(Γ, B), let f ∈ C[x] be a polynomial, and let a ∈ C• be a

root of f with valuation γ1 and corresponding to the line ℓ = {γ0 − iγ1 : i ∈ N}.

We have ina f ∈ Bγ0 [x] and by Lemma 3.3.10, the monomial substitution x 7→ ax in

the definition of ina f (3.2.23) does not affect the multiplicity. Additionally, for any c ∈ Bγ0 ,

multiplication by c−1 gives an isomorphism Bγ0 → B0 = B× which again preserves

multiplicity. Therefore, the quantity

multBlc•(a)(ina f) := multC1 (c
−1 ina f)

is well-defined. We take this as the general definition of a multiplicity for an initial form.

For split extensions, this multiplicity agrees with the multiplicity of the initial form

defined in 3.2.18. This extends Remark 3.2.24.

Proposition 3.3.12. If C = B[Γ] is a split extension, and a ∈ C• has valuation γ, then

multBlc•(a)(ina f) as defined in 3.3.11 is equal to multBlc•(a)(inγ f) as defined in 3.0.13.

Proof. From Remark 3.2.24, if a = bγ , then

ina f(x) = in1γ f(bx) = 1γ0 inγ f(bx).

Next, from Definition 3.3.11, we defined

multBlc•(a)(ina f) = mult
B[Γ]
1

(
1−γ in1γ f(bx)

)
= mult

B[Γ]
1 (inγ f(bx)) .

We want to check that computing this multiplicity in B[Γ][x] rather than in B[x] makes no

difference.

First, since B embeds in B[Γ], we have an inequality

multB1 (inγ f(bx)) ≤ mult
B[Γ]
1 (inγ f(bx))
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by Proposition 3.3.8.

Second, suppose we have some factorization inγ f(bx) ⩽ (x− 1)g(x) in B[Γ][x]. And

now remember that by definition of NB[Γ] (3.2.4), a relation holds if and only if it holds

among just the terms of smallest valuation. I.e. if we let g̃(x) be obtained from g(x) by

throwing out any higher order terms, then we have the relation inγ f(bx) ≼ (x− 1)g̃(x) in

B[x]. Therefore, by induction, we have

multB1 (inγ f(bx)) = mult
B[Γ]
1 (inγ f(bx)) .

We finish by observing that

multB1 (inγ f(bx)) = multBb (inγ f(x)) = multBlc•(a)(inγ f).

3.4 Hyperfields

We defined hyperfields as idylls in Definition 3.1.14. Or, more specifically, we defined

idylls of quotient hyperfields. In this section, we make use of the language of pastures from

the previous section to describe hyperfields in more detail. Then we will explain how our

definition of tropical extension generalizes the semidirect product of Bowler and Su [BS21].

Definition 3.4.1. A hyperfield is a pastureH , such that the hypersum a⊞b := {c : c ⩽ a+b}

is always nonempty and the operation ⊞ is associative:

(a⊞ b)⊞ c =
⋃

t∈a⊞b

t⊞ c =
⋃

t∈b⊞c

a⊞ t = a⊞ (b⊞ c).

Here we are using the monadic laws discussed in (Remark 3.1.16).

Example 3.4.2. The tropical hyperfield is the hyperfield on R ∪ {∞} where a ∈ b ⊞ c

if the minimum of a, b, c occurs at least twice. The tropical idyll is the idyllic part of this

pasture. ♢
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Example 3.4.3. The sign hyperfield is the hyperfield on S• = {0, 1,−1} and where addition

is defined by

⊞ 0 1 −1

0 0 1 −1

1 1 1 S•

−1 −1 S• −1

The sign idyll is the idyllic part of this pasture. ♢

Definition 3.4.4. A hypergroup H is a set H together with a distinguished element 0 and

hypersum operation ⊞ from H ×H to the powerset of H such that for all x, y, z ∈ H:

• ⊞ is commutative and associative,

• 0⊞ x = {x},

• there exists a unique element −x such that 0 ∈ x⊞ (−x),

• x ∈ y ⊞ z if and only if −y ∈ (−x)⊞ z.

Remark 3.4.5. Another definition (the standard one) of a hyperfield is that it is a hypergroup

with a multiplication which distributes over hypersums and which has multiplicative inverses.

I.e. hyperfields are monoids in the category of hypergroups.

We now describe Bowler and Su’s semidirect product construction in a slightly-modified

language. Because we work in a commutative setting, we can simplify some conditions

required by non-commutativity.

Definition 3.4.6. Let B be a hyperfield, let H = (H, 1, ·) be an Abelian group written

multiplicatively, and let Γ be an OAG. Suppose we have an exact sequence

1 → B× ι−→ H
v−→ Γ → 1, (3.3)

and we will assume that ι is the identity.
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Define H• = H ∪ {0} to be the monoid obtained by formally adding an absorbing

element 0 to H . Next, for each γ ∈ Γ, let Bγ = v−1(γ) as in Definition 3.2.22.

If x, y ∈ Bγ ∪ {0} and c ∈ Bγ , we can define x ⊞γ y = {z ∈ Bγ ∪ {0} : (c−1z) ∈

(c−1x) ⊞ (c−1y) in B}. This hypersum is independent of c, because if c1, c2 ∈ Bγ then

multiplication by c1c
−1
2 is an automorphism of B. This defines a hypersum on Bγ :=

Bγ ∪ {0} and makes Bγ into a hypergroup.

The Γ-layering B ⋊H,v Γ of B along this short exact sequence is a hyperfield whose

underlying monoid is H• and where y ⊞ z is

(H1) {y} if v(y) < v(z),

(H2) {z} if v(z) < v(y),

(H3) y ⊞γ z if v(y) = v(z) =: γ and 0 /∈ y ⊞γ z,

(H4) y ⊞γ z ∪ {x : v(x) > γ} if 0 ∈ y ⊞γ z.

Proposition 3.4.7. The Bowler-Su semidirect product C := B⋊H,v Γ is a tropical extension

in the sense of Definition 3.0.7.

Proof. Since the underlying monoid of C is H•, the short exact sequence in equation (3.3)

is the same as

1 → B× ι−→ C× v−→ Γ → 1

in Definition 3.0.7.

Next, let us check that im(ι) = eq(v, 1), i.e. that B is a full subblueprint of C. By

construction, we have B• = eq(v, 1)• as monoids. We need to check relations. If x, y, z ∈

B•, then we can take c = 1C in the definition of ⊞0 to see that x ∈ y ⊞ z in B if and only

if x ∈ y ⊞0 z in C if and only if x ∈ y ⊞ z in C (compare (H3)). Therefore im(ι) is a full

subblueprint and hence equal to eq(v, 1).

Finally, we need to check that x ∈ y ⊞ z if and only if this holds when looking at just

the terms of minimal valuation.
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• If v(x) = v(y) < v(z) then x ∈ y ⊞ z if and only if x ∈ y ⊞ 0 by (H1).

• If v(x) = v(z) < v(y) then x ∈ y ⊞ z if and only if x ∈ 0⊞ z by (H2).

• If v(y) = v(z) < v(x) then x ∈ y ⊞ z if and only if 0 ∈ y ⊞ z by (H4).

• If the minimum valuation does not occur at least twice, then vacuously there are no

x, y, z such that x ∈ y⊞z and neither do we have any the relations 0 ∈ y⊞0, 0 ∈ 0⊞z

or x ∈ 0⊞ 0.

So we conclude that C is a tropical extension.

3.5 Lifting Theorem for Multiplicities

We have defined tropical extensions, initial forms and multiplicities and seen that our

definitions agree with each other. Now we are ready to prove the main theorem, and we will

do this over the course of this section. First, let us recall the definition of wholeness from

the introduction.

Definition 3.5.1. An idyll B is whole if for every pair of elements a, b ∈ B•, there exists at

least one element c such that c ≼ a+ b.

Recall that in language of hyperfields or partial fields, we have a notion of sum sets:

a⊞ b = {c : c ≼ a+ b} (Remark 3.1.15). A pasture is whole if every sum is non-empty. So

hyperfields and fields are always whole, but partial fields are only whole if they are fields.

Whole idylls are closely related therefore to hyperfields.

Remark 3.5.2. If B is whole, then any tropical extension by B is also whole. We have two

cases. First, if v•(a) = v•(b), then both a and b live in some torsor Bγ . Now take c ∈ Bγ

and consider c−1a, c−1b ∈ B0 = B×. Since B is whole, we can find an element c′ such that

c′ ≼ c−1a+ c−1b and then multiply both sides by c to get cc′ ≼ a+ b.

Otherwise, if v•(a) < v•(b), say, then a ≼ a+ b because this relation is true among the

minimum valuation terms.
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This brings us to the main theorem. Let us recall.

Theorem 3.B. Let B be a whole idyll and let C ∈ Ext1(Γ, B) be a tropical extension of Γ

by B. Let f ∈ C[x] be a polynomial and let a ∈ C• be a root of f . Then

multCa (f) = multBlc•(a)(ina(f)).

Theorem 3.A, which describes the split case, is a direct corollary of this theorem in light

of Proposition 3.3.12.

Lemma 3.5.3. Let C ∈ Ext1(Γ, B) and define the idyllic subblueprint OC of C to be

the induced subblueprint corresponding to the submonoid {c ∈ C• : v•(c) ≥ 0}. Let

ev0 : OC → B be the map which “evaluates t at 0” meaning

ev•0(c) =


c if c ∈ B0,

0 if c ∈ Bγ, γ > 0.

Then ev0 is a morphism.

The language of “evaluating t at 0” comes from the split case, wherein ev•0(bt
γ) = b0γ

with the usual convention that 00 = 1.

Proof. Simple case checking shows that ev0 : O•
C → B• is a morphism. It is left then to

check that ev0(NOC
) ⊆ NB.

Given
∑
ci ∈ NOC

, there are two cases. First, if every ci has a positive valuation, then

ev0(
∑
ci) = 0B ∈ NB. Second, suppose that I = {i : v•(ci) = 0} is non-empty. Then by

definition of NC , we must have
∑

I ci ∈ NOC
⊂ NC since 0 is the minimum valuation. But∑

I ci also lives in B0 = B×, so we get
∑

I ci = ev0(
∑
ci) ∈ NB.

Lemma 3.5.4. multCa (f) ≤ multBlc•(a)(ina(f)).

103



Proof. Recall that the initial form of a polynomial f =
∑
cix

i ∈ C[x] is defined as

ina(f) =
∑
I

lc•(ci)(ax)
i ∈ Bγ0 [x],

where I = {i : v•(ciai) is minimal} and γ0 is that minimum value. In other words, this

initial form is obtained from the polynomial g(x) = f(ax) by restricting the sum to I .

Observe that by Lemma 3.3.10, we have multC1 g = multCa f .

Next, choose any c ∈ Bγ0 . By Proposition 3.3.8, and the fact that multiplication by c is

invertible, we have multC1 c
−1g = multC1 g, independent of the choice of c.

Now observe that c−1g ∈ OC [x] and ev0(c
−1g) = c−1 ina(f). So because ev0 is a

morphism (Lemma 3.5.3), we must have

multC1 c
−1g ≤ multB1 c

−1 ina(f).

By what we have said, the left side of this inequality is multCa (f) and the right side is

multBlc•(a)(ina(f)).

Lemma 3.5.5. In proving Theorem 3.B, we may assume that Γ = R.

Proof. We would like to appeal to Lemma 3.2.20 and induction, but in order to do so, we

need a finite-rank hypothesis. We can get this by considering the subgroup generated by the

coefficients.

Specifically, let f ≼ (x− a)g0 and gk ≼ (x− a)gk+1 be a sequence of factorizations of

maximal length. Let Γ′ be the subgroup generated by the coefficients of f, g0, g1, . . . . If we

define C ′ =
⋃

γ∈Γ′ Bγ , then multCa f = multC
′

a f and rankΓ′ <∞.

We now have everything in hand to prove the lifting theorem.

Theorem 3.C. Any factorization of ina f into (x− 1)g can be lifted to a factorization of f

into (x− a)g̃ such that ina g̃ = g.
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Proof. First, by making monomial substitutions x 7→ ax or x 7→ a−1x in the appropriate

places, we are going to assume that a = 1. Also, by multiplying by c or c−1 for some

c ∈ Bγ0 , we are going to assume that the minimal valuation of the terms in f or in1 f is

exactly 0. As a consequence, we now have the identity in1 f = ev0 f ∈ B[x], and by the

last half of the proof of Proposition 3.3.12 regarding factorization in B versus in B[Γ], there

is no loss of generality treating this as a polynomial over B rather than over C.

From Lemma 3.5.5, we can assume that Γ = R, and this will allow us to consider the

Newton polygon as defined in subsubsection 3.2.1. We will break up the polynomial’s

support into three intervals. Let i0 = min{i : v•(ci) = 0} and i1 = max{i : v•(ci) = 0}.

Let IL = {i : i < i0} be the left interval, let IM = {i : i0 ≤ i ≤ i1} be the middle interval,

let IR = {i : i > i1} be the right interval, and as always, we define I = {i : v•(ci) = 0}.

See Figure 3.4 for a visual.

So suppose we have in1 f ≼ (x − 1)g, where f =
∑
cix

i and g =
∑
dix

i. In

what follows, we will treat the coefficients as infinite sequences by defining the terms not

appearing in the sum to be 0. Then, we will modify the coefficients of g by redefining them

in such a way that if g̃ is obtained from g by redefining some di’s then in1 g̃ = ev0 g̃ = g. In

particular, if di is non-zero then we do not touch it and if di = 0 then it might be redefined

to another element of positive valuation.

Claim 1. The support of g is contained in i0, . . . , i1 − 1 and di0 ̸= 0 and di1−1 ̸= 0.

These facts are the same as for polynomials over a field. For instance, we know that

deg g = deg(in1 f) − 1 because there are no zero-divisors in an idyll. For the smallest

non-zero coefficient, we can write f = xd0f0 and g = xkg0 where k is maximal. If k ̸= d0

then we can divide both sides of in1 f ≼ (x− 1)g by xmin{k,d0} and set x = 0 (i.e. consider

the relation in degree 0) to get a contradiction. ♢

Next, let us describe how to lift g on each of the left, middle and right parts of the

Newton polygon. We will start with the middle since in1 f is supported there.
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left middle right
i0 i1

Figure 3.4: Newton polygon describing the construction

Claim 2. We have
∑

IM
cix

i ≼ (x− 1)g (with no changes to g).

To say that in1 f ≼ (x− 1)g means that ci ≼ di−1 − di for i ∈ I . But it also means that

0 ⩽ di−1 − di for i ∈ IM \ I . Now, if c ∈ C• has a positive valuation, then we also have

c ≼ di−1 − di, since by definition of NC , a relation holds in C if and only if it holds among

just the terms of minimal valuation. Therefore ci ≼ di−1 − di for all i ∈ IM . ♢

Next we look at IL. Here, we will begin by redefining d0 = −c0. After that, there are

three kinds of points in the Newton polygon/indices i. First, there are the points where

v•(ci) < min{v•(ck) : k < i} (in the diagram these are where the blue staircase on the left

descends). Second, there are points where v•(ci) = min{v•(ck) : k < i} (points along the

flats of the staircase). Then finally, there are points where v•(ci) > min{v•(ck) : k < i}

(points above the staircase).

For the points where the staircase descends, we define di = −ci. For the points

on or above the flats of the staircase, inductively define di to be any element for which

di ≼ di−1 − ci (making use of the wholeness axiom). Note that because v is a valuation,

v•(di) ≥ min{v•(di−1), v
•(ci)} and so these have a positive valuation if i < i0. We make

these redefinitions for all i ∈ IL.

Claim 3. We have in1 g̃ = g and
∑

IL∪IM cix
i ≼ (x− 1)g̃.

For the first part of the claim, we note that based on how we have redefined di, any time

we changed a value, it was a zero value becoming a value with a positive valuation.
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We need to check that ci ≼ di−1 − di for i = 1, . . . , i0 − 1. We have already verified

this for i = i0, . . . , i1 with the exception that now for i0, we have di0−1 ̸= 0, this change is

handled below in Case 1.

To start, the relation c0 ≼ 0 − d0 holds by definition. From there, we proceed by

induction.

Case 1: if we are at a point where the staircase descends, then we have v•(ci) =

v•(di) < v•(di−1). Here the relation ci ≼ di−1 − di holds because it holds among the

minimal valuation terms: ci ≼ −di.

Case 2: if we are on or above one of the flats, then the definition di ≼ di−1 − ci is

equivalent to ci ≼ di−1 − di. ♢

Lastly, we need to define di for i ∈ IR and also di1 . We will start by defining another

staircase function: j(i) = min{k : v•(ck) is minimal and k > i}. In the diagram, j(i) is

the next x-coordinate along the pink staircase on the right. When j(i− 1) ̸= j(i), we will

define di−1 = ci. Otherwise, we let di be any element satisfying di ≼ di−1 + ci+1.

Claim 4. We have in1 g̃ = g and
∑
cix

i ≼ (x− 1)g̃.

As with the last claim, the first part just comes down to verifying that any time we have

redefined a zero-valued di, the new value has a positive valuation. This is true here because

v•(ci) > 0 for any i > i1 by definition of i1.

Now we need to check that ci ≼ di−1 − di for i = i1 − 1, i1, i1 + 1, . . . . The indices in

IL ∪ IM have already been checked except for i1, since we have given a new value to di1 .

Again we have two cases:

Case 1: if j(i− 1) ̸= j(i) then that is because v•(ci) < v•(ck) for any k > i. Here we

have di−1 = ci and v•(di) > v•(di−1). Thus ci ≼ di−1 − di because the minimal valuation

part of this relation is ci ≼ di−1.

Case 2: if j(i − 1) = j(i) then we proceed by induction. The sequence j(i) is non-

decreasing and as a base case, we know that ci ≼ di−1 − di every time j(i − 1) < j(i).
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Given ci ≼ di−1 − di and j(i− 1) = j(i), we will check that ci+1 ≼ di − di+1. Indeed, this

is exactly how we defined di+1, so that this relation would hold.

Finally, we finish the proof of Theorem 3.B. We do what we have done before: take a

factorization sequence of in1 f of maximal length and lift it to a factorization sequence of f .

That gives us

multCa (f) ≥ multBlc•(a)(ina f).

Combining this with Lemma 3.5.4, we obtain Theorem 3.B.

3.6 Examples and Connections

Theorems 3.A and 3.B imply some results of previous papers. First of all, it gives a new

proof of Theorem D from Baker and Lorscheid’s paper [BL21a].

Corollary 3.6.1. Let f ∈ T[x] and for a ∈ R, define va(f) to be j − i if the edge in the

Newton polygon of f with slope −a has endpoints (i, ci) and (j, cj). If there is no such edge,

define va(f) = 0.

Given this, we have multTa (f) = va(f).

Proof. By Theorem 3.A, we have multTa (f) = multK1 (ina f) and ina f is the sum of xk

over all k such that (k, ck) is in the edge of slope −a. And for the Krasner idyll, we have

multK1 (x
i + · · ·+ xj) = j − i (Example A.0.1).

Next, let us have a look at the extension TR = S[R] ∈ Ext1(R,S) which was the main

focus of [Gun22a].

Corollary 3.6.2. Let f ∈ TR[x] and a = (+1)γ ∈ TR•. Then multTRa f equals the number

of sign changes among the coefficients corresponding to points in Newt f inside the edge of

slope −γ.

108



Proof. By Theorem 3.A, we have multTRa f = multS+1 inγ f , where with the notation we

have been using, inγ f =
∑

I lc
•(ci)x

i and I is the set of all i such that (i, v•(ci)) is

contained in the edge of Newt f with slope −γ.

Next, by [BL21a, Theorem C], multS+1 inγ f is equal to the number of sign changes in

the sequence (lc•(ci) : i ∈ I)—ignoring zeroes.

Remark 3.6.3. The next place to look would be at multiplicities over TC. We still have

that multTCa f = multPlc•(a) inv•(a) f but there is no existing simple description of multP.

In fact, polynomials over P have some pathologies as pointed out by Philipp Jell [BL21a,

Remark 1.10]: the polynomial x2 + x+ 1 ∈ P[x] has a root at eiθ for all π/2 < θ < 3π/2.

In contrast, polynomials over K or S or tropical extensions thereby, can only have finitely

many roots.

3.6.1 Higher rank

Combining Lemma 3.2.20 with the main theorem, tells us how to compute multiplicities of

polynomials in the context of a higher-rank valuation.

Example 3.6.4. Consider the following polynomial over C(s, t) with valuation v•(smtn) =

(m,n) ∈ (R2,≤lex):

f = (x− t)(x− s)(x− st)(x− 2st)

= x4

− (t+ s+ 3st)x3

+ (st+ 3st2 + 3s2t+ 2s2t2)x2

− (3s2t2 + 2s2t3 + 2s3t2)x

+ 2s3t3.

Suppose we want to know how many roots of f have valuation (1, 1). I.e. what is
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multT2

(1,1) trop(f) where

trop(f) = (3, 3) + (2, 2)x+ (1, 1)x2 + (0, 1)x3 + x4 ∈ T2[x]?

By Lemma 3.2.20, we start by considering the s-valuation vs(smtn) = m and draw a

Figure 3.5: Newton polygon of f with respect to vs in Example 3.6.4

Newton polygon based on the first coordinate of each coefficient (Figure 3.5). Then, we

pick out the line segment of slope −1 to create the initial form

in1 trop(f) = 3 + 2x+ 1x2 + 1x3 ∈ T[x].

Figure 3.6: Newton polygon of in1 trop(f) in Example 3.6.4

Next, we draw the Newton polygon of this initial form with respect to the t-valuation

(Figure 3.6). Here we can take another initial form to get in1(in1 trop(f)) = 1 + x+ x2 ∈

K[x]. So multT2

(1,1) trop(f) = 2. ♢

3.6.2 Connection to polynomials over fields

Let us summarize what is know about a question which has been discussed before in [BL21a]

and [Gun22a]: given a morphism φ from a fieldK to an idyllB, and a polynomial F ∈ K[x]

lying over f ∈ B[x], what can we say about multiplicities in K compared to in B?
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There are two questions here: local and global. Locally, we have the following inequality

[BL21a, Proposition B]:

multBb f ≥
∑

a∈φ−1(b)

multKa F. (3.4)

Globally, we know that the sum of the multiplicities in B might be infinite (Re-

mark 3.6.3).

Here we will give a partial answer to the question that Baker and Lorscheid asked about

when a hyperfield satisfies the degree bound, which in Definition 3.0.16 we defined as:

∑
b∈B

multBb f ≤ deg f

for all polynomials f ∈ B[x]. By their Proposition B, a corollary of this bound is that (3.4)

becomes an equality.

Theorem 3.D. If B satisfies the degree bound and C ∈ Ext1(Γ, B), then C satisfies the

degree bound.

Proof. Let f ∈ C[x] be a polynomial. Since any one polynomial only requires a finite-rank

value group to define, we are going to again assume that Γ = R, use induction to extend to

any finite-rank value group, and then use the fact that any polynomial lives in a finite-rank

sub-extension.

With this reduction, consider the polynomial v(f) ∈ T[x] via the morphism v : C → T.

The Newton polygon will have a finite number of edges and hence a finite number of

non-monomial initial forms, say inγk v(f) for k = 1, . . . , d. Now, let ak ∈ Bγk ⊆ C be

a representative of γk. Each initial form is not-necessarily-canonically isomorphic to a

polynomial in B[x], and we are going to use the degree bound in B to get a bound in C.

First of all, we partition the roots of f by valuation so

∑
a∈C

multCa f = multC0 f +
d∑

k=1

∑
a∈Bγk

multCa f.

111



Next, we will show that

∑
a∈Bγk

multCa f ≤ deg inak f −multC0 inak f. (3.5)

This will suffice to prove the theorem, because

d∑
k=1

(
deg inak f −multC0 inak f

)
= deg f +multC0 f.

This holds because the width of the Newton polygon is equal to the sum of the widths of

each edge in the polygon.

To show (3.5), apply some transformation c−1
k f(akx) to get a polynomial in OC [x].

Then apply ev0 to get a polynomial in B[x]. By Theorem 3.B and Theorem 3.C, there is

a equality between multiplicities of valuation 0 roots of c−1
k f(akx) and non-zero roots of

ev0(c
−1
k f(akx)) ∈ B[x]. This shows (3.5).

Since we know that the Krasner and sign hyperfields satisfy the degree bound, we have

the following corollary.

Corollary 3.6.5. If B is either a field or K or S, and C ∈ Ext1(Γ, B) then C satisfies the

degree bound. For example, this applies to C = K,S,T,TR and the higher-rank versions

Tn = K[Rn] and S[Rn].

Proof. Combine Theorem 3.D with [BL21a, Proposition B].

Based on a classification of Bowler and Su, we can conclude that so-called stringent

hyperfields satisfy the degree bound.

Definition 3.6.6. A hyperfield (idyll) is stringent if the sum-set a⊞ b = {c : c ⋞ a+ b} is a

singleton whenever a ̸= b.

Corollary 3.E. Every stringent hyperfield satisfies the degree bound.
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Proof. Combine Corollary 3.6.5 with Bowler and Su’s classification of stringent hyperfields

[BS21, Theorem 4.10].

Some open questions

Corollary 3.E leads to several interesting questions.

Question. Is there a more direct proof of Corollary 3.E which does not rely on Bowler and

Su’s classification?

Question. Is the converse of Corollary 3.E true? I.e. if a hyperfield satisfies the degree

bound, is it necessarily stringent?

Question. Baker and Zhang show that a hyperfield is stringent if and only if its associated

idyll satisfies a “strong-fusion axiom” [BZ23, Proposition 2.4]. If the previous question has

a positive answer, can we extend that to pastures or idylls with an additional axiom like

strong-fusion?
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CHAPTER 4

FACTORING MULTIVARIATE POLYNOMIALS OVER HYPERFIELDS AND THE

MULTIVARIABLE DESCARTES’ PROBLEM

Joint work with Andreas Gross.

Famously, Descartes’ Rule of Signs states that the number of positive solutions of a

polynomial

f(x) = a0 + a1x+ · · ·+ anx
n ∈ R[x]

is bounded above by the number of sign changes of the sequence of coefficients a0, . . . , an.

Numerous proofs have been found since Descartes’ original work [Kri63; Alb43], some of

which are extremely short [Wan04; Kom06]. There are several generalizations of Descartes’

Rule of Signs as well: the Budan–Fourier theorem and Sturm’s theorem give estimates of the

number of solutions of real polynomials in a given interval in terms of the number of sign

changes of suitable sequences of real numbers. Laguerre proved, using Rolle’s theorem, that

Descartes’ rule also holds if the exponents appearing in f are arbitrary real numbers, and

the problem of finding and characterizing more general functions satisfying Descartes’ rule

has received some attention [HT11; Tok11; Cur18]. Descartes’ bound (in the polynomial

setting) is also known to be sharp [Gra99].

In multiple variables, one possible generalization of Descartes’ rule considers a single

polynomial f(x) in several variables and asks on how many components of the complement

of its vanishing set the polynomial f(x) can be positive, given the signs of its coefficients

[FT22]. Another generalization considers systems of real polynomial equations 0 = f1(x) =

f2(x) = · · · and asks how many solutions with only positive entries such a system can have,

given the signs of the coefficients of each of the fi. This latter formulation was first studied

by Itenberg and Roy [IR96], who made a conjecture for a sharp upper bound of positive
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solutions in terms of Newton polytopes and mixed subdivisions. Popularized by a $500

bounty by Bernd Sturmfels, the conjecture received some attention and was later disproven

[LW98]. More recently, Bihan-Dickenstein and Bihan-Dickenstein-Forsgård gave a sharp

upper bound for the number of positive solutions of systems of polynomials supported on a

circuit [BD17; BDF21]. The general case is still wide open.

Example 4.0.1. With multiple variables, it is possible to have a family of equations with

consistent signs but whose solutions have varying signs. This phenomenon does not happen

in one variable where, if the coefficients change k times, Descartes’ rule tells us that there

will always be exactly k positive roots assuming all the roots are real. For example, consider

the system

x2 + y2 = 1,

ax+ by = 1,

a, b > 0.

The space of real solution sets consists of four open components as shown in Figure 4.1. ♢

Figure 4.1: Possible sign patterns which arise from intersecting a line with the unit circle.

4.0.1 Descartes’ rule and hyperfields

Hyperfields are generalizations of fields, where addition may be multivalued. These appear

naturally when looking at the quotient of a field by a multiplicative group. For instance, we

can take the real numbers and quotient by the group of absolute values (R>0) to obtain the

hyperfield of signs S = {+1,−1, 0}. The arithmetic of signs has rules such as 1 + 1 = 1
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(the sum of two positive numbers is always positive) and 1 + (−1) = S (the sum of a

positive and negative number may have any sign). Similarly, if we quotient R by {±1},

we get a hyperfield which encapsulates the arithmetic of absolute values. Arithmetic of

non-Archimedean absolute values is often used in tropical geometry. We call this hyperfield

the tropical hyperfield, T. This hyperfield is an enrichment of the tropical semifield. We can

also combine signs and non-Archimedean absolute values with the so-called real tropical

hyperfield TR, which is a sort of semidirect product of S and T. This hyperfield is useful to

describe real tropical geometry [JSY22].

In their recent paper [BL21a], Baker and Lorscheid have given a proof of Descartes’ Rule

of Signs using hyperfields. What they show is that given a real polynomial f(x) ∈ R[x] with

n positive roots, its image f sign in S[x] must be divisible by x− 1 ∈ S[x] at least n times.

The multiplicity multSx−1(f
sign) of x− 1 as a factor of f sign therefore bounds the number

of positive roots of f from above. Moreover, Baker and Lorscheid show that the maximal

number of times one can factor out x− 1 (i.e. multSx−1(f
sign)) is exactly the number of sign

alterations as in Descartes’ rule. Their theory also applies to the tropical hyperfield [BL21a]

as well as other hyperfields like those associated to higher rank valuations or combining

valuations and signs [Gun22a; Gun22b]. Akian-Gaubert-Tavikalipour have also carried out

similar factorization results for polynomials over Rowan’s “semiring systems” [AGT23].

4.0.2 Linear factors of multivariate polynomials

An analogous formulation of Descartes’ rule that has, so far, received little attention asks the

following: given a polynomial f(x) in several variables with given support and coefficients

with prescribed signs, what is the sharp upper bound for the number of its linear factors

with a prescribed sign pattern? There is some relationship between this problem and the

system-of-equation problem because the sparse resultant of a system of equations yields

a single polynomial whose linear factors correspond (with multiplicity!) to the common

solutions of the system. However, as shown in the example above, the signs of the resultant
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are not uniquely determined from the signs of the system.

We approach the linear factor problem with the same strategy used by Baker and

Lorscheid [BL21a] in the univariate case: for a real multivariate polynomial f(x) ∈ R[x]

and a “signed” degree-1 polynomial l = s0 +
∑
sixi ∈ S[x], we define multRsign−1{l}(f) as

the maximal number of degree-1 polynomials k with ksign = l that we can factor out of f .

Similarly, we define multSl (f
sign) as the maximal number of times that we can factor l out

of f sign (as pointed out by Baker and Lorscheid [BL21a], one has to be careful here since

quotients are not unique; see Definition 4.3.1).

Theorem 4.A (= Lemma 4.3.5). We have

multRsign−1{l}(f) =
∑
k

multRk (f) ≤ multSl (f
sign),

where we sum over a set of representatives k of the image of sign−1{l} in R[x]/R∗, using

unique factorization in R[x].

Even in the one variable case, a real polynomial might have complex roots, meaning

its observed number of positive roots could be less than the maximum allowed by its sign

configuration. We define the relative multiplicity (with respect to sign) of l in a polynomial

g ∈ S[x], by

multsignl (g) = max{multRsign−1{l}(f) : f
sign = g}.

Then the problem of finding the sharp upper bound for the number of linear factors with

prescribed sign pattern in a polynomial with coefficients of prescribed signs becomes the

question of determining the relative multiplicities multsignl (g). As an immediate consequence

of the Theorem 4.A, we obtain the following corollary.

Corollary 4.B (= Proposition 4.3.29). For l ∈ S[x] of degree 1 and g ∈ S[x] arbitrary we

have

multsignl (g) ≤ multSl (g).

117



Note that we prove Corollary 4.B in much greater generality, where sign is replaced by

an arbitrary morphism of hyperfields.

Example 4.0.2. Let

f = (x− 1)(x− 2)(x2 + 2) = x4 − 3x3 + 4x2 − 6x+ 4 ∈ R[x].

Then f sign = x4 − x3 + x2 − x + 1 ∈ S[x]. By Descartes’ rule [BL21a, Theorem C], we

have multSx−1(f
sign) = 4 (the number of sign changes) but

multRsign−1{x−1}(f) = multRx−1 f +multRx−2 f = 2.

On the other hand, multsignx−1(f
sign) = 4 since, for example, (x− 1)4 is a real polynomial in

sign−1{f sign} with 4 positive roots. ♢

The sharpness in Descartes’ rule of signs for univariate polynomials means precisely

that multsignl (g) = multSl (g) for any g ∈ S[x]. In more than one variable, this is not true.

Theorem 4.C (= Example 4.3.31). There exists a degree-3 polynomial g ∈ S[x, y] and a

degree-1 polynomial l ∈ S[x, y] with

multsignl (g) < multSl (g).

In addition to not being a sharp bound for the relative multiplicity, we do not have a

combinatorial description for the multiplicity multSl (g) like in the univariate case. This

makes the multiplicity hard to compute. In practice, it is often sufficient to work with what

we call the boundary multiplicity ∂-multSl (g), which is the maximum of the multiplicities

obtained after setting one of the variables to 0.
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4.0.3 Subdivisions, Geometry and Multiplicities

Something that makes factoring tropical polynomials easier than factoring sign polynomials

is that there is a geometry associated to tropical polynomials. A linear factor of a tropical

polynomial corresponds to a tropical hyperplane within the tropical hypersurface defined

by that polynomial. For a polynomial over TR, we define enriched tropical hypersurfaces

and consider the multiplicities of enriched linear hyperplanes. We call this the (enriched)

geometric multiplicity. See Figure 4.5 for a demonstration of this idea.

Looking the opposite way, if we have a polynomial over S, then we can try to perturb the

coefficients a little bit to yield a polynomial over TR. Where the geometric multiplicity tells

us to exploit an existing subdivision of the Newton polytope, here we impose a subdivision

by perturbing coefficients. We call this the perturbation multiplicity, ϵ-multSl (g). The

perturbation multiplicity is a lower bound on the hyperfield multiplicity because factoring

with respect to an imposed subdivision is stricter than factoring irrespective of a subdivision.

Moreover, it is also a lower bound on the relative multiplicity because the factors with the

imposed subdivision can be lifted to, say, the real Puiseux series.

Theorem 4.D (= Corollary 4.3.35, Proposition 4.3.29, Corollary 4.3.7, Theorem 4.3.42). If

f ∈ S[x] is dense—meaning every monomial of degree ≤ deg f has a non-zero coefficient—

and l ∈ S[x] has degree 1, then we have

ϵ-multSl (f) ≤ multsignl (f) ≤ multSp (f) ≤ ∂-multSp (f).

If f is dense of degree two in two variables, then we have equality everywhere.
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4.0.4 Systems of equations

Let φ : K → H be a morphism from a field K to a hyperfield H . Given polynomials

g1, . . . , gn ∈ H[x1, . . . , xn] and h ∈ (H∗)n we denote by

Nφ
h (g1, . . . , gn)

the maximal number of solutions x with φ(x) = h that a system f1(x) = · · · = fn(x) = 0

of equations over K with finite solution set (in K) and f sign
i = gi can have. For K = C

and H = K, the answer is given by the Bernstein-Khovanskii-Kushnirenko (BKK) theorem.

For φ = sign: R → S these are precisely the numbers studied by Itenberg and Roy [IR96].

Let fi ∈ K[x] with fφ
i = gi. Introducing an auxiliary linear form l = 1 + y1x1 . . . ynxn

with indeterminate coefficients and taking the (mixed sparse) resultant Rf1,...,fn ∈ K[y] of

f1, . . . , fn, l, finding solutions to the system of equations

f1(x) = · · · = fn(x) = 0

is equivalent to finding linear factors of R. More precisely, if the coefficients of f1, . . . , fn

are generic, then we have

Rf1,...,fn ∝
∏

a∈V (fi)⊂(K
∗
)n

(1 + a1y1 + · · ·+ anyn),

with the proportionality being up to a unit. The polynomial Rf1,...,fn is a specialization of a

polynomial RA1,...,An ∈ Z[y] which is determined just by the support sets Ai = supp(fi).

Resultants allow us to apply our techniques to systems of equations:

Theorem 4.E (=Theorem 4.4.10). LetRg1,...,gn ⊆ H[y] be the set of polynomials obtained by

evaluating the resultant R̃A1,...,An ∈ Z[y] at the coefficients of the gi, where Ai = supp(gi).
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Moreover, let lh = 1 +
∑
hiyi. Then we have

Nφ
h (g1, . . . , gn) ≤ max{multHlh(r) : r ∈ Rg1,...,gn}.

We observe in several examples that the bound is far from sharp. However, applying

the theorem to the counterexample to the Itenberg-Roy conjecture given by Li and Wang

[LW98] yields the correct bound and shows that Li and Wang have in fact chosen an example

where the number of positive solutions is maximal for the given choices of supports and

signs.

We also study the numbers Nφ
h (g1, . . . , gn) when φ is a valuation and H = T or

H = TR, depending on whether K is algebraically closed or real closed. In this case each

of the gi defines a tropical hypersurface V (gi) and we study the case where the intersection⋂n
i=1 V (gi) is transverse at the image of h in Rn (this means that if H = TR we apply

the projection TR → T coordinate-wise). Using a result by Sturmfels on initial forms of

resultants [Stu94a], we prove the following result.

Theorem 4.F (= Theorem 4.4.6). Assume that H = T, that φ is a valuation, and that⋂n
i=1 V (gi) meets transversely at h. Then Nφ

h (g1, . . . , gn) equals the multiplicity of the

tropical intersection product V (g1) · · ·V (gn) at h. If H = TR and φ is the “signed

valuation”, then Nφ
h (g1, . . . , gn) equals 1 if h is an alternating point of V (g1) · · ·V (gn)

and 0 otherwise (see page 171 for a definition of alternating).

Combining Theorem 4.F with the completeness of the theory of real closed fields,

we obtain a combinatorial multiplicity ϵ-N sign
h (g1, . . . , gn) in terms of transverse tropical

intersections or, dually, mixed Newton subdivisions. It is analogous to the combinatorial

multiplicities ϵ-multl(g) and agrees with the numbers appearing in the conjecture of Itenberg

and Roy. Our methods allow us to reprove Itenberg and Roy’s lower bound.

Corollary 4.G ([IR96], Corollary 4.4.8). For g1, . . . , gn ∈ S[x1, . . . , xn] and h ∈ (S∗)n we
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have

ϵ-N sign
h (g1, . . . , gn) ≤ N sign

h (g1, . . . , gn).
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4.0.6 Notation

Hyperfields

K Krasner hyperfield 4.1.3

S Sign hyperfield 4.1.4

T Tropical hyperfield 4.1.5

H ⋊ Γ,TR Tropical extensions, tropical real hyperfield 4.1.6

htw = (h,w) Element of a tropical extension
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Maps and Morphisms

sign: K → S The sign of an element of a real field 4.1.17

ν : K → T A (Krull) valuation 4.1.14

fφ, f sign, f ν , etc. Apply φ, sign, ν, etc. to each coefficient 4.2.4

ac : K → κ Angular component map for a valued field 4.1.16

ac : H ⋊ Γ → H Angular component map for a tropical extension 4.1.14

νac : K → κ⋊ Γ Refined valuation 4.1.16

νsgn : K → S⋊ Γ Signed valuation 4.1.3

PF Polynomial function map 4.2.13

Multiplicities

ϵ-multH Perturbation multiplicity 4.3.34

multφ Relative multiplicity 4.3.28

multH Hyperfield multiplicity 4.3.1

∂-multH Boundary multiplicity 4.3.6

gmultH H-enriched geometric multiplicity 4.3.20

Nφ
h Multiplicity for systems of equations 4.4

ϵ-Nh Perturbation multiplicity for systems of equations 4.4.9

4.1 Fields and Hyperfields

Hyperfields are algebraic objects which are well-suited to capture the arithmetic of signs

(having forgotten the absolute value) or the arithmetic of absolute values (having forgotten

the signs). One can think of a hyperfield as a field but where adding pairs of elements gives

a non-empty set subject to the usual rules of commutativity, associativity, distributivity, etc.

The axiom labeled “reversible” behaves as an ersatz subtraction.

Definition 4.1.1. A hyperfield is a tuple H = (H, 0, 1, ·,⊞) where

• 0 ̸= 1,
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• H∗ = (H \ {0}, 1, ·) is an Abelian group,

• 0 is an absorbing element: 0 · a = a · 0 for all a ∈ H .

Additionally, the hyperaddition ⊞ is a multivalued operation, that is a function ⊞ : H×H →

{nonempty subsets of H}, such that for all a, b ∈ H:

• a⊞ b = b⊞ a (commutative),

• 0⊞ a = {a} (identity),

• there is a unique element −a such that 0 ∈ a⊞ (−a) (inverses),

•
⋃
{a⊞ t : t ∈ b⊞ c} =

⋃
{t⊞ c : t ∈ a⊞ b} (associative)

• a ∈ b⊞ c ⇐⇒ −b ∈ (−a)⊞ c (reversible)

Repeated addition is treated monadically, using the power set monad. This means that

notationally we will identify elements of H and singletons and repeated hyperaddition

is flattened by unions—for example, a ⊞ (b ⊞ c) = (a ⊞ b) ⊞ c means exactly what the

associativity axiom says.

In what follows, we will rarely need to work directly with the axioms above because we

will use a common and more familiar subtype of hyperfields called quotient hyperfields. All

the hyperfields used in this chapter are quotient hyperfields.

Definition 4.1.2. Let F be a field and let G be a subgroup of the group of units F ∗.

The quotient hyperfield F/G is the quotient set with the induced multiplication and the

hyperaddition defined by

aG⊞ bG = {(c+ d)G : c ∈ aG and d ∈ bG}.

If instead F was a ring, then F/G is a quotient hyperring.
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For simplicity of notation, we will often use the same symbols in F to denote their

equivalence classes in F/G. Furthermore, if a⊞ b is a singleton, we will omit the braces

which indicate that the sum is a set.

Example 4.1.3. If F is any field with at least 3 elements, then the hyperfield K = F/F ∗ =

{0, 1} is called the Krasner hyperfield after Marc Krasner. It has the following arithmetic:

· 0 1

0 0 0

1 0 1

⊞ 0 1

0 0 1

1 1 K

The Krasner hyperfield is the hyperfield analogue of the Boolean semifield which has the

same arithmetic except that 1 + 1 = 1 instead of {0, 1}. ♢

Example 4.1.4. The sign hyperfield S = R/R>0 = {0, 1,−1} is a quotient of the real

numbers by the subgroup of positive real numbers. The arithmetic on S is given by the

following tables.

· 0 1 −1

0 0 0 0

1 0 1 −1

−1 0 −1 1

⊞ 0 1 −1

0 0 1 −1

1 1 1 S

−1 −1 S −1

This arithmetic encodes rules like “positive times negative is negative”, “negative plus

negative is negative,” and “positive plus negative can be anything.” ♢

Example 4.1.5. If (F, | · |) is a field with an absolute value, then we can take its quotient by

the group of elements with absolute value 1 to create a hyperfield whose underlying set is

the image |F |. The resulting hyperfield is called a triangle hyperfield in the Archimedean

case or an ultratriangle hyperfield in the non-Archimedean case. Such hyperfields were

first described by Viro who showed how they can be used to do computations in tropical

geometry [Vir11].
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The most common such hyperfield is where | · | is a non-Archimedean valuation whose

image is R≥0. For our purposes, it will be more convenient to use the image of the associated

valuation val(x) = − log |x| (i.e. the set R ∪ {∞}) as the base set instead. We call this the

tropical hyperfield, denoted by T, where the arithmetic is given by a ·T b = a+R b and

a⊞ b =


min{a, b} a ̸= b,

[a,∞] a = b.

♢

4.1.1 Tropical Extensions

Example 4.1.6. If H is any hyperfield and Γ is an ordered Abelian group, then we can

extend Γ by H to get a version of the ultratriangle hyperfields of Example 4.1.5 “with

coefficients in H .”

Define the set

H ⋊ Γ = {(h, γ) : h ∈ H∗, γ ∈ Γ} ∪ {∞}.

We will also use the notation htγ = (h, γ) to better emphasize the relation between these

extensions of hyperfields and extensions of a valued fieldK to a valuation onK(t) orK((t))

or similar (Remark 4.1.9).

Multiplication is defined by (h1t
γ1)(h2t

γ2) = (h1h2)t
γ1+γ2 and the hypersum of h1tγ1

and h2tγ2 is defined as



h1t
γ1 γ1 < γ2,

h2t
γ2 γ2 < γ1,

(h1 ⊞ h2)t
γ1 γ1 = γ2 and 0H /∈ h1 ⊞ h2,

(h1 ⊞ h2)t
γ1 ∪ {htγ : h ∈ H, γ > γ1} γ1 = γ2 and 0H ∈ h1 ⊞ h2.

(4.1)

We call this construction a tropical extension. ♢
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Remark 4.1.7. The hyperfield TR = S ⋊ R is called the tropical real hyperfield. This

hyperfield and other specific tropical extensions were first described in Viro’s work [Vir11].

The idea of extending ordered groups by a hyperfield appeared in the work of Bowler and

Su [BS21]. The tropical real hyperfield has also been used to describe real tropical geometry

(e.g. [JSY22]).

Remark 4.1.8. In terms of tropical extensions, we also have T = K⋊R and, in fact, every

ultratriangle hyperfield described in Example 4.1.5 is of the form K ⋊ Γ where Γ is the

image of the non-Archimedean valuation or absolute value.

Remark 4.1.9. If H = F/G as in Definition 4.1.2, then we can form the field of Hahn series

F [[tΓ]] =

{∑
i∈I

ait
i : ai ∈ F and I is a well-ordered subset of Γ

}
.

There is a natural valuation ν on F [[tΓ]] given by ν(
∑

i∈I ait
i) = min{i ∈ I : ai ̸= 0}.

Now define

G0 =

{
f =

∑
i∈I

ait
i ∈ F [[tΓ]] : ν(f) = 0Γ and a0 ∈ G

}
.

The hyperfield H ⋊ Γ is isomorphic to F [[tΓ]]/G0.

Remark 4.1.10. Bowler and Su [BS21] have a more general construction of a hyperfield

from any extension

1 → H∗ → G→ Γ → 0

of groups in which the conjugation operation of G on H∗ extends to an action of G on H

via automorphisms of hyperfields. In this context, H ⋊ Γ is the hyperfield corresponding to

the split extension of Γ by H∗. Moreover, Bowler and Su show if H ∈ {K,S}, then all such

extensions are split [BS21, Theorem 4.17]. In a paper of the second author (TG), Bowler

and Su’s construction is described using the language of ordered blueprints [Gun22b] (also

chapter 3).
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Remark 4.1.11. We can make the same definition if Γ is an ordered semigroup instead of

a group. If Γ is not a group, then H ⋊ Γ will be a hyperring instead of a hyperfield. This

will be useful for us to talk about valuation hyperrings, which take the form H ⋊ Γ≥0 with

Γ≥0 = {γ ∈ Γ : γ ≥ 0}.

4.1.2 Morphisms

Definition 4.1.12. A morphism between two hyperfields H1 and H2 is a map φ : H1 → H2

such that for all x, y ∈ H1:

• φ(0) = 0,

• φ(1) = 1,

• φ(xy) = φ(x)φ(y),

• φ(x⊞ y) ⊆ φ(x)⊞ φ(y).

Lemma 4.1.13. If φ : H1 → H2 is a morphism of hyperfields and we have A ∈⊞n

i=1
BiCi

in H1, then

φ(A) ∈
n

⊞
i=1

φ(Bj)φ(Cj).

Proof. By induction.

4.1.3 Valuations

Definition 4.1.14. Let H be a hyperfield. A valuation on H is a morphism

ν : H → K⋊ Γ

of hyperfields for some totally ordered Abelian group Γ.

Example 4.1.15.
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(a) If K is a field and ν : K → K ⋊ Γ is a map, then ν is a valuation in the sense of

Definition 4.1.14 if and only if it is a valuation in the usual sense.

(b) For every hyperfield H and every totally ordered Abelian group Γ, we obtain a

valuation

ν : H ⋊ Γ → K⋊ Γ, (h, γ) 7→ γ.

The map

ac : H ⋊ Γ → H, (h, γ) 7→ h

is not a morphism of hyperfields in general. We call it the angular component map

(c) For every hyperfield H there is a unique morphism of hyperfields

ν0 : H → K.

As K = K⋊ 0, this is a valuation with value group 0, the trivial valuation. ♢

Definition 4.1.16. Let K be a valued field with valuation ν : K → K⋊ Γ and residue field

κ. Assume that the valuation ν : K → T splits, that is that there exists a morphism of

Abelian groups ψ : Γ → K∗ with ν(ψ(γ)) = tγ . By abuse of notation, we denote ψ(γ) = tγ .

We define the angular component (with respect to the given splitting) ac(a) of a ∈ K∗ by

ac(a) = t−ν(a)a ∈ κ,

where the bar indicates that we take the class in the residue field. We also set ac(0) = 0. We

can then refine the valuation to a morphism of hyperfields

νac : K → κ⋊R, a 7→


ac(a)tν(a) , if a ̸= 0

0 , else.
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By definition, we have ac(a) = ac(νac(a)) for every a ∈ K.

Recall that a real closed field is a field K which is not algebraically closed and whose

algebraic closure is K(i) = K[x]/(x2+1). Every real closed field is an ordered field, where

the non-negative elements are precisely the squares. A valued real closed field is a real

closed field K together with a valuation

ν : K → K⋊ Γ

such that 0 < a < b implies ν(a) ≥ ν(b). In this case, the residue field κ is real closed

again. If ν is surjective, then it splits [AGS20, Lemma 2.4]. Since the angular component is

multiplicative, we have

sign(a) = sign(ac(a))

for all a ∈ K. We define the signed valuation νsgn as the composite

K
νac−→ κ⋊ Γ

sign⋊Γ−−−−→ S⋊ Γ.

By what we just observed, we have ν(νsgn(a)) = ν(a) and ac(νsgn(a)) = sign(a) for all

a ∈ K.

4.1.4 Real fields

Definition 4.1.17. A hyperfieldR, is called real if it is equipped with a morphism sign: R →

S. We call sign a sign map on R.

Remark 4.1.18. Definition 4.1.17 mirrors Definition 4.1.14 and, in fact, both are special

cases of “valuations” in the theory of ordered blueprints [Lor18c, Chapter 6].

Remark 4.1.19. For any ordering ≤ on a fieldR, there exists a unique morphism φ : R → S

such that φ(x) = 1 if x > 0 and φ(x) = −1 if x < 0. In fact, if R is a ring, then morphisms

s : R → S correspond to pairs consisting of a prime ideal ker(s) and a total order on
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R/ ker(s) [CC11, Proposition 2.12]. This concept can be extended to the language of

schemes [Jun21].

Remark 4.1.20. Given a morphism from a field K to TR, we get both a total order on K

defined by the composition K → TR
ac−→ S and a valuation on K defined by K → TR

ν−→ T.

The converse does not need to hold. For instance, Q has a natural total order and various

p-adic valuations, but these p-adic valuations are not compatible with the total order. For a

description of what makes a valuation compatible with a total order, we refer the reader to

discussions in other papers [Gun22a; AGT23].

4.2 Polynomials over hyperfields

Definition 4.2.1. If H is a hyperfield and x = x1, . . . , xn are indeterminants, we define the

set of polynomials

H[x] =
{∑

amxm : m ∈ Zn
≥0,with finite support

}
,

where we use multi-index notation xm = xm1
1 · · ·xmn

n and the support of f =
∑
amxm

is the set supp(f) = {m ∈ Zn
≥0 : am ̸= 0}. Addition and multiplication (defined by

convolution) give set-valued operations, meaning that H[x] is not, in general, a hyperfield.

If f, g, h ∈ H[x] are such that f ∈ g · h, we call this a factorization of f . Concretely, if

the coefficients of f, g, h are am, bm, cm, respectively, this means that for every m ∈ Zn
≥0

we have,

am ∈ ⊞
n+p=m

bncp.

If f =
∑
amxm ∈ H[x] and z ∈ Hn, then f(z) denotes the evaluation of f at z,

which is the set⊞ amzm.

Remark 4.2.2. Because addition in hyperfields is set-valued, when we construct polynomials,

both multiplication and addition are set-valued. We will make use of these operations, but we
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will not try to develop a broader theory of ring-like algebras with multivalued multiplication

and addition for two reasons. First, H[x] is generally not “free” in the usual understanding

of the adjective. Second, there is an existing theory due to Lorscheid of “ordered blueprints”

which contains both hyperfields and free algebras, and which is a nicer and more natural

setting to discuss polynomial algebras over hyperfields [Lor18c], [BL21a, Appendix].

See [Gun22b] for a demonstration of how to rephrase hyperfield notation and multiplicities

in terms of ordered blueprints.

Definition 4.2.3. In some examples, it will be convenient to use a grid notation for polyno-

mials in two variables, where we put the coefficient of xiyj at position (i, j) and an empty

space for a 0 coefficient. For instance, the grid

f =
+

−
+ − +

denotes the polynomial +1− x− y + x2 + y2 ∈ S[x, y].

Definition 4.2.4. Let φ : H1 → H2 be a morphism of hyperfields and let f ∈ H1[x]. We

denote by fφ the polynomial in H2[x] obtained by applying φ to all coefficients of f .

Corollary 4.2.5. If φ : H1 → H2 is a morphism of hyperfields, and f ∈ g · h in H1[x], then

fφ ∈ gφ · hφ.

Proof. This follows directly from Lemma 4.1.13.

Definition 4.2.6. Given two sets of polynomials H1[x] and H2[x], by a diagonal transfor-

mation, Φ: H1[x] → H2[x], we mean a function which is a composite of a map as in Defini-

tion 4.2.4 and a diagonal monomial substitution of the form x 7→ axk = (a1x
k1
1 , . . . , anx

kn
n )

for some a ∈ Hn
2 and k ∈ (Z>0)

n.

Remark 4.2.7. More general monomial substitutions do not necessarily lead to element-to-

element maps. For instance, substituting y 7→ x in x+ y yields (1⊞ 1)x. In the next lemma,

132



we could also consider substitutions coming from injective semigroup homomorphisms

Nn → Nn instead of just a diagonal ones but since the only substitutions we use have the

form x 7→ ax or maybe relabelling some variables, it just makes for easier notation to only

consider diagonal substitutions.

Lemma 4.2.8. If f ∈ g · h and (xi) 7→ (aix
ki
i ) is a diagonal monomial transformation, then

f(axk) ∈ g(axk) · h(axk).

Proof. Let Am, Bn, Cp be the coefficients of f, g, h, respectively. So we have

Am ∈ ⊞
m=n+p

BnCp

for all m ∈ Z≥0. This implies that

Amamk ∈ ⊞
m=n+p

BnCpa
nk+pk

which is the condition that f(axk) ∈ g(axk) · h(axk).

Combining Corollary 4.2.5 and Lemma 4.2.8, we obtain the following:

Corollary 4.2.9. If Φ: H1[x] → H2[x] is a diagonal transformation and f ∈ g · h ∈ H1[x],

then Φ(f) ∈ Φ(g) · Φ(h).

4.2.1 Newton Polygons

A useful tool to understand the combinatorics of polynomials over valued (hyper)fields is

the Newton polytope.

Definition 4.2.10. Let f =
∑
amxm ∈ H[x]. We call the convex hull of supp(f) ⊂ Rn the

Newton polytope, denoted Newt(f). We say that f is dense if supp(f) = Newt(f) ∩ Zm.

When H has a valuation v : H → T, we furthermore have a subdivision of Newt(f),

constructed as follows.
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Take the set of points

S = {(m, v(am)) ∈ Zm ×R : m ∈ supp(f)}.

The lower convex hull of S is the intersection of all “lower-halfspaces” containing S . Here, a

lower-halfspace is a halfspace cut out by a “lower-inequality”: {p ∈ Rm+1 : ⟨u, p⟩+ c ≥ 0}

for some u ∈ Rm × R≥0 and c ∈ R. This lower convex hull is sometimes called the

extended Newton polytope of f .

By projecting the faces of this extended Newton polytope into the first m coordinates,

we obtain a subdivision of Newt(f). For polynomials over valued hyperfields, Newt(f)

refers to both the polytope and the subdivision, where appropriate.

Example 4.2.11. Consider the polynomial 1+ x+ y+ x2 + xy+1y2 ∈ T[x, y]. The edges

and vertices of the extended Newton polytope are drawn in Figure 4.2 in greyscale and the

associated subdivision is drawn beneath it in purple. ♢

Figure 4.2: Extended Newton polytope of the polynomial f = 1+ x+ y+ x2 + xy+1y2 ∈
T[x, y] and associated subdivision of Newt(f). Numbers indicate the valuation of the
corresponding coefficient.

Definition 4.2.12. The Newton polytope of 1 +
∑n

i=1 xi is the standard (n+ 1)-simplex,

denoted ∆n+1. The Newton polytope of 1 +
∑n

i=1 x
d
i is denoted d∆n+1 and is the d-fold
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Minkowski sum of ∆n+1. Concretely,

d∆n+1 =
{
a ∈ Rn

≥0 :
∑

ai ≤ d
}
.

Given a polynomial f ∈ H[x], we say that f has Newton-degree d if Newt(f) = d∆n+1.

4.2.2 Polynomial Functions

Definition 4.2.13. Every polynomial f =
∑
amxm ∈ T[x1, . . . , xn] determines a tropical

polynomial function PFf , given by

PFf : R
n → R, x 7→ min{am + ⟨m, x⟩ : m ∈ Zn

≥0}.

Tropical polynomial functions are piecewise linear with integral slopes. We say that

a monomial amxm of f is essential if PFf (x) = am + ⟨m,x⟩ on some open subset

of Rn. In general, the polynomial f is not determined by PFf , but all of its essential

monomials are. More precisely, if f ess denotes the sum of the essential monomials of f ,

then PFf = PFfess . It follows that for two polynomials f, g ∈ T[x] we have PFf = PFg if

and only if f ess = gess. We say that f is strictly convex if f = f ess. Note that we always

have Newt(f) = Newt(f ess).

Remark 4.2.14. Polynomial functions use arithmetic from the tropical semifield R̄ where

a⊕ b is the single element min{a, b}. In Lorscheid’s theory of ordered blueprints, there is

a functor which relates the hyperfield T with the semifield R̄. Consider the order ⩽ on T,

defined by a ⩽ b+ c if a ∈ b⊞ c. If we add the relation 1 + 1 ⩽ 1, we obtain R̄.

Lemma 4.2.15. Let f, g ∈ T[x] be polynomials and let h ∈ f · g. Then we have

PFh = PFf + PFg.

Proof. Let am, bm and cm denote the coefficients of f , g, and h, respectively. Let w ∈ Rn
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be generic; more precisely, we require that w is contained in the dense open subset of

Rn where there exist unique m1,m2 ∈ Zn
≥0 such that PFf (w) = am1 + ⟨m1,w⟩ and

PFg(w) = bm2 + ⟨m2,w⟩. In particular, the minimum

min{am + bm′ + ⟨m+m′,w⟩ : m,m′ ∈ Zn
≥0}

is attained exactly once, namely for m = m1 and m′ = m2, and equal to PFf (w) +

PFg(w). Since for k ∈ Z≥0 we have ck ≥ min{am + bm′ : m+m′ = k}, with equality if

the minimum is attained exactly once, it follows that cm1+m2 = am1 + bm2 and that

PFh(w) = cm1+m2 + ⟨m1 +m2,w⟩ = PFf (w) + PFg(w).

By continuity of polynomial functions, this implies that PFh = PFf+PFg on all of Rn.

4.2.3 Initial forms

Let H be a hyperfield and f ∈ (H ⋊R)[x] and let w ∈ Rn. Consider the sub-hyperring

H ⋊ R≥0 = ν−1(R≥0 ∪ {∞}) analogous to the valuation subring in a valued field. By

definition of polynomial functions, we have

f̃ := t−PFfν (w)f(tw1x1, . . . t
wnxn) ∈ (H ⋊R≥0)[x]

and the minimum of the valuations of the coefficients of f̃ is 0. Denote

r : H ⋊R≥0 → H, (h, l) 7→


0 if l > 0,

h else.

One checks that r is a morphism of hyperrings. The initial form inw(f) is defined as the

image of f̃ under r, that is

inw(f) = (f̃)r.
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Lemma 4.2.16. Let f, g ∈ (H ⋊R)[x], let w ∈ Rn, and let h ∈ f · g. Then we have

inw(h) ∈ inw(f) · inw(g).

Proof. By Lemma 4.2.15 we have PFhν (w) = PFfν (w) + PFgν (w). It follows that

t−PFhν (w)h(tw1x1, . . . , t
wnxn)

∈
(
t−PFfν (w)f(tw1x1, . . . , t

wnxn)
) (
t−PFgν (w)g(tw1x1, . . . , t

wnxn)
)
.

Applying the hyperring morphismH⋊R≥0 → H to both sides of “∈” finishes the proof.

We can then define the initial form of f ∈ K[x] at w ∈ Rn by

inw(f) = inw(f
νac).

This recovers the definition from the literature [MS15, Chapter 2.4].

4.2.4 Tropical Hypersurfaces

Definition 4.2.17. Let f ∈ T[x] be a tropical polynomial. Its associated bend locus, zero

set, variety or hypersurface is the set V (f) = {b ∈ Rn : f(b) ∋ ∞}.

Remark 4.2.18. Over a general hyperfield, one can also consider the zero set of a polyno-

mial f as {a ∈ Hn : f(a) ∋ 0H}. For our purposes, we defined the zero set as a subset

of Rn = (T∗)n instead of Tn as that matches the more familiar definition of a tropical

hypersurface [MS15].

Such “equations over hyperfields” were first studied by Viro [Vir11]. For the tropical

reals, Jell-Scheiderer-Yu reworded semialgebraic inequalities in terms of a polynomial

containing a positive, non-negative, zero, etc. element of TR [JSY22].

For a polynomial f ∈ T[x], the associated hypersurface, V (f), carries a natural polyhe-
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dral structure. Namely, one defines w,w′ ∈ V (f) to be in the relative interior of the same

polyhedron if and only if inw(f) = inw(f
′). The facets of this polyhedral complex consist

of precisely those points w for which inw(f) is a binomial.

This is a weighted polyhedral complex where, if inw(f) = xa + xb is a binomial, the

weight V (f)[σ] of the facet σ containing w is the integral length of a− b. The polyhedral

complex on V (f), together with the weights on the facets, is called the tropical hypersurface

of f . By abuse of notation, we also denote it by V (f).

There is also a dual complex to V (f), which is the polyhedral complex on the Newton

polytope of f whose non-empty polyhedra are the convex hull of the supports of polynomials

of the form inw(f) for w ∈ Rn. The components of Rn \V (f) correspond to the vertices of

the Newton subdivision, which in turn are precisely the exponents of the essential monomials

of f . The facets of V (f) correspond to the edges of the Newton subdivision.

While we described V (f) in terms of f for simplicity, it only depends on the polynomial

function PFf . In fact, V (f) determines PFf up to a linear function. As polynomial

functions can be added (tropical multiplication), this induces a sum of tropical hypersurfaces

as well. The sum of two tropical hypersurfaces V and W can be described explicitly without

reference to the defining polynomials (or polynomial functions). Namely, the underlying set

of V +W is V ∪W , and the weights are the sums of the weights of V and W , where on

V \W we take the weight to be 0, and similarly on W \ V .

4.3 Factoring multivariate polynomials over hyperfields

4.3.1 The hyperfield multiplicity

Definition 4.3.1. Let F ,L ⊆ H[x] be non-empty sets of polynomials over a hyperfield

H and assume that the degree is bounded on F (i.e. there exists some d > 0 such that all

f ∈ F have degree at most d). We let

(F : L) = {g ∈ H[x] : g · l ∩ F ̸= ∅ for some l ∈ L}.
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Then we define the hyperfield multiplicity multHL (F) as follows: if L contains a unit, we set

multHL (F) = ∞. Otherwise, we define the multiplicity inductively as

multHL (F) =


0 if (F : L) = ∅,

1 + multHL ((F : L)) else.

If L = {l} or F = {f} are singletons, we will use the same notation without the braces,

such as (f : l) or multHl (f).

Remark 4.3.2. In most prior works, the multiplicity operator is defined for one polynomial

and one linear factor. The exception to this is the work of Liu, which allows for a set of

linear factors (but where F is still a single polynomial) [Liu20].

Example 4.3.3. If H = K, and l = 1 +
∑n

i=1 xi ∈ K[x1, . . . , xn], then l ·
∑

|m|≤d−1 x
m is

the set of all polynomials over K of Newton-degree d. So if f ∈ K[x] has Newton-degree

d, then multl(f) = d. ♢

Lemma 4.3.4. Let F ,L ⊆ H[x] be non-empty sets such that the degree is bounded on F .

Then we have

multHL (F) = max{multHL (f) : f ∈ F}.

Proof. It follows directly from the definition of the multiplicity that if ∅ ≠ F ′ ⊆ F , then

multHL (F ′) ≤ multHL (F).

Therefore, we have

multHL (F) ≥ max{multHL (f) : f ∈ F}.

We show the reverse implication by induction on multHL (F), the base case multHL (F) = 0

being trivial. If multHL (F) > 0, then we have

multHL ((F : L)) = max{multHL (g) : g ∈ (F : L)}
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by the induction hypothesis. Let g ∈ (F : L) be an element where this maximum is attained

and let f ∈ F and l ∈ L such that f ∈ g · l. Then we have

multHL (f) = multHL ((f : L)) + 1 ≥ multHL (g) + 1

= multHL ((F : L)) + 1 = multHL (F).

Lemma 4.3.5. Let H1 and H2 be hyperfields, let Φ: H1[x] → H2[x] be a diagonal trans-

formation. Let L,F ⊆ H1[x] such that the degree is bounded on F . Suppose that Φ(F)

does not contain the zero polynomial. Then we have

multH1
L (F) ≤ multH2

Φ(L)(Φ(F)).

Proof. Since the degree is bounded on F , it is also bounded on Φ(F). Also, if L contains a

unit, then so does Φ(L). Therefore, we may assume that neither L nor Φ(L) contain a unit.

The result now follows by induction from Corollary 4.2.5 and Lemma 4.2.8.

4.3.2 The boundary multiplicity

For i = 0, . . . , n, let πi be the monomial transformation which substitutes xi 7→ 0 and

xj 7→ xj for j ̸= i. These monomial transformations are subject to Lemma 4.3.5.

Definition 4.3.6. Let F ,L ⊆ H[x1, . . . , xn] be nonempty sets such that the degree on F

is bounded. Let F̃ and L̃ denote the polynomials in the variables x0, . . . , xn obtained by

homogenizing the sets F and L, respectively. We define the boundary multiplicity of F at L

to be

∂-multHL (F) = ∂-multHL̃ (F̃) = min{multH
πi(L̃)

(πi(F̃)) : 0 ≤ i ≤ n}

Corollary 4.3.7. Let F ,L ⊂ H[x] be nonempty sets with bounded degree on F . We have

multHL (F) ≤ ∂-multHL (F).
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Proof. Since multiplicities are not affected by homogenization, this follows directly from

Lemma 4.3.5 applied to the morphisms πi for 0 ≤ i ≤ n.

Example 4.3.8.

(a) If f ∈ K[x] has Newton-degree d and l ∈ K[x] is the unique polynomial of Newton-

degree 1, then by Example 4.3.3 we have

multKl (f) = ∂-multKl (f) = d.

(b) Let f ∈ S[x, y, z] be the degree-3 polynomial given by

f =

+

− +

+ + −
+ + − +

and let l be the degree-1 polynomial given by

l = +

+ +
.

Then by the univariate Descartes’ Rule of Signs [Gun22b, Example A.2], [BL21a,

Theorem C], we have ∂-multSl (f) = 1. We claim that multSl (f) = 0. Indeed, if

f ∈ g · l, then it follows from the conditions on the boundary that

g =
+

− −
+ − +

But for this choice of g, the xy-coefficient of any h ∈ g · l is necessarily negative,

contradicting the fact that the xy-coefficient of f is positive.

♢
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4.3.3 Multiplicities and initial forms

Example 4.3.9. Let f =
∑

m∈Zn
≥0
amx

m ∈ (H ⋊R)[x] be a polynomial in n-variables and

let w ∈ Rn. Moreover, let l = 1 +
∑n

i=1 t
−wixi ∈ (H ⋊R)[x]. We have

inw(l) = 1 +
n∑

i=1

xi.

In the univariate case (i.e. n = 1), we have

multl(f) = multinw(l)(inw(f))

by [Gun22b, Theorem A] (= Theorem 3.A). This cannot be true in higher dimensions by

Lemma 4.2.15. Concretely, it fails for the polynomial

f = 0 + x+ y + 2x2 + 1xy + 2y2 ∈ T[x, y]

and w = 0. Here, we have in0(f) = in0(l) = 1 + x+ y and hence multinw(l)(inw(f)) = 1.

On the other hand, V (f) does not contain V (l), as shown in Figure 4.3, and therefore

multl(f) = 0 by Lemma 4.2.15. We observe that

multl(f) ≤ multinw(l)(inw(f))

in this example. ♢

Proposition 4.3.10. Let H be a hyperfield, let f ∈ (H ⋊R)[x], and let w ∈ Rn. Moreover,

let L be a set of linear forms. Then we have

multL(f) ≤ multinw(L)(inw(f)),

where inw(L) = {inw(l) : l ∈ L}.
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Figure 4.3: Tropical curves defined by 0 + x+ y + 2x2 + 1xy + 2y2 and 0 + x+ y.

Proof. This follows from Lemma 4.2.16 and induction.

In the case where the polynomial f is defined over a field and factors as a product of

linear forms, the initial forms contain considerably more information:

Proposition 4.3.11. Let K be an algebraically closed valued field with residue field κ,

let f =
∏d

i=1 li ∈ K[x] be a product of linear polynomials li ∈ K[x], and let w ∈ Rn.

Moreover, let l = 0 +
∑

(−wi) · xi ∈ T[x]. Then we have

multKν−1{l}(f) = multκ
ν−1
0 {inw(l)}(inw(f))

Proof. After potentially scaling f and the li, we may assume that the constant coefficient of

each li, if it exists, is equal to 1. Then the multiplicity multKν−1{l}(f) is equal to the number

of 1 ≤ i ≤ d such that lνi = l. Under the assumption on the constant coefficients, lνi = l is

equivalent to inw(li) having support ∆n, which is equivalent to

inw(li)
ν0 = 1 +

n∑
j=1

xi = inw(l) ∈ K[x]

Combining this with the fact that

inw(f) =
d∏

i=1

inw(li)
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(Lemma 4.2.16), concludes the proof.

Lemma 4.3.12. Let K be a valued real closed field with residue field κ, and let f =∏d
i=1 li ∈ K[x] be a product of linear polynomials li ∈ K[x] over the algebraic closure

K = K[
√
−1] of K. Furthermore, let w ∈ Rn and assume that a degree-1 polynomial

l ∈ κ[x] divides inw(f) with multiplicity 1. Then there exists a degree-1 polynomial

l ∈ K[x] dividing f with inw(l) = l.

Proof. We have inw(f) =
∏d

i=1 inw(li) by Lemma 4.2.16. In particular, we may assume

that after potentially renumbering and scaling by an appropriate element in K
∗
, we have

inw(l1) = l. It remains to show that l1 ∈ K[x]. Let ι : K → K denote complex conjugation.

Then f ι = f , and therefore lι1 agrees with lj up to a constant factor for some 1 ≤ j ≤ d. It

follows that inw(lj) and inw(l1) = l differ by a constant. By the assumption that l divides

inw(f) with multiplicity 1, we conclude that j = 1. After potentially scaling by a constant,

we may thus assume that lι1 = l1, that is that l1 ∈ K[x].

Proposition 4.3.13. Let K be a valued real closed field with residue field κ. Suppose

f ∈ K[x] factors as a product of linear forms f =
∏d

i=1 li over the algebraic closure

K = K[
√
−1] of K, and let w ∈ Rn. Moreover, let l = 1t0 +

∑
sit

−wixi ∈ TR[x] for a

choice of signs si ∈ S∗. Assume that each factor of inw(f) has multiplicity 1. Then we have

multKνsgn−1{l}(f) = multκsign−1{inw(l)}(inw(f))

Proof. We have

inw(f) =
d∏

i=1

inw(li).

As a linear form g ∈ K[x] is contained in K>0 · νsgn−1{l} if and only if inw(g) ∈

sign−1{inw(l)}, it follows that

multKνsgn−1{l}(f) ≤ multκsign−1{inw(l)}(inw(f)).
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The reverse inequality follows directly from Lemma 4.3.12.

4.3.4 The geometric multiplicity

Suppose we have a hyperfield with valuation, sayH⋊R. Given a polynomial f overH⋊R,

the valuation creates a tropical hypersurface V (f). If f has a linear factor, then we will

have a linear component in this tropical hypersurface as well. Specifically, as observed in

Example 4.3.9, it is a direct consequence of Lemma 4.2.15 that for any linear form l and

polynomial f we have

V (f) = multl(f) · V (l) + V (g)

for some polynomial g. This warrants the following definition.

Definition 4.3.14. Let V be a tropical hypersurface and let L ⊆ (H ⋊R)[x] be a subset

consisting of polynomials of degree 1 that are not monomials. Then we define the geometric

multiplicity, gmultKL (V ), of V with respect to L to be

gmultKL (V ) = max
k∑

i=1

ai

with the maximum taken over all k and all ai ∈ Z≥0 such that

W +
k∑

i=1

aiV (lνi ) = V

for some tropical hypersurface W and some li ∈ L. For f ∈ (H ⋊R)[x] we abbreviate

gmultKL (V (f)) = gmultKL (f).

Example 4.3.15.

(a) Let f = 0 + x + y + 1x3 + 1x2y + 2y3 ∈ T[x, y]. As we see from the Newton

subdivision shown in Figure 4.4, the vanishing locus V (f) is a union of 2 tropical

lines, one of which centered at the origin and one at (−0.5,−1). So if l = 0 + x+ y,
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then gmultKl (f) = 1. On the other hand, we claim that multl(f) = 0. Indeed, assume

that

f ∈ l · (a+ bx+ cy + dx2 + exy + fy2).

By looking at the coefficients of the constant term, x3, and y3, we see that we need to

have a = 0, d = 1, and f = 2. Because the coefficients of f at x2, y2, and xy2 are

infinite, we also need to have b = 1, c = 2, and e = 2. But then the xy-coefficient of

f is contained in 2 + 3 + 3 = {2}, a contradiction.

(b) Let f = +0 − x + y ∈ TR[x, y] and l = +0 + x + y. Then gmultKl (f) = 1, but

multTRl (f) = 0. ♢

Figure 4.4: Newton subdivision of f = 0+x+y+1x3+1x2y+2y3 and associated tropical
curve V (f).

While both Example 4.3.15 (a) and (b) show that the geometric multiplicity is, in general,

larger than the multiplicity, the two examples are of a very different nature. Morally, in

part (a) the reason for the discrepancy is that the vanishing locus of f does not “see” all

monomials of f inside the Newton polytope, whereas in part (b) the reason is that the

definition of geometric multiplicity of a polynomial over H ⋊R only uses the valuation of

the coefficients and does not use any information about H . To change this, we make the

following definition.

Definition 4.3.16. Let H be a hyperfield. An H-enrichment of a tropical hypersurface A

in Rn, is an assignment of an element in H∗ to every connected component of Rn \ A.

Equivalently, it is a map V → H , where V is the set of vertices of the Newton subdivision
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corresponding to A. In particular, every f ∈ (H ⋊R)[x] induces an H-enriched tropical

hypersurface V (f).

If A and B are two H-enriched tropical hypersurfaces, their sum A + B is defined to

have the sum of the underlying tropical hypersurfaces of A and B as the underlying tropical

hypersurface, and the value of a connected component C of Rn \ A+B is the product of

the values of the connected components of Rn \ A and Rn \B that contain A.

Remark 4.3.17. Enriched tropical hypersurfaces have also appeared in recent work of

[JP22] in the context of A1-geometry. In that setting, the components of the complement of

a tropical hypersurface take values in the quotient hyperfield k/(k∗)2 for some field k.

Definition 4.3.18. An H-enriched tropical polynomial function on Rn is a tropical polyno-

mial function f : Rn → R, together with an H-enrichment s of V (f). The tropical product

of two H-enriched tropical polynomial functions (f, s) and (g, s′) is given by (f + g, t),

where t is the enrichment of V (f + g) obtained by adding the H-enriched hypersurfaces

(V (f), s) and (V (g), t). Given a polynomial f ∈ (H⋊R)[x] in n variables, the polynomial

function PFfν is naturally H-enriched: on each component C of Rn \ V (f), a unique

monomial, say atwxm, of f ν is minimized, and we assign to C the value a ∈ H∗. We denote

by PFf the H-enriched polynomial function obtained this way.

Lemma 4.3.19. Let f, g ∈ (H ⋊R)[x] and let h ∈ f · g. Then

PFh = PFf ⊙ PFg

as H-enriched tropical polynomial functions. In particular, we have

V (h) = V (f) + V (g).

Proof. By Lemma 4.2.15, we only need to show that the H-enrichments on both sides

coincide. Let C be a component of Rn \ V (hν) and suppose the unique monomials of f

147



and g that are minimized on C are M1 = atw1xm1 and M2 = btw2xm2 , respectively. Let f ′

and g′ be the polynomials obtained from f and g by omitting M1 and M2, respectively, then

h ∈M1M2 +M1g
′ +M2f

′ + f ′g′.

By construction, we have for any point w ∈ C that PFf (w) = PFM1(w) < PFf ′(w) and

PFg(w) = PFM2(w) < PFg′(w). Therefore,

PFM1M2(w) < PFM1g′+M2f ′+f ′g′(w),

from which we conclude that M1M2 is the unique monomial of h minimized at w (and

hence on C) and that the enrichment of h on C is given by a · b, which is precisely the

product of the enrichments of f and g there.

The statement about hypersurfaces follows immediately from the statements about

polynomial functions and the fact that V (hν) = V (f ν) + V (gν).

We can now define an enriched version of the geometric multiplicity, completely analo-

gous to the geometric multiplicity.

Definition 4.3.20. Let V be an H-enriched tropical hypersurface and let L ⊆ (H ⋊R)[x]

be a subset consisting of linear forms. Then we define the H-enriched geometric multiplicity

gmultHL (V ) of V with respect to L to be

gmultHL (V ) = max
k∑

i=1

ai

with the maximum taken over all k and all ai ∈ Z≥0 such that

W +
k∑

i=1

aiV (li) = V

for some H-enriched tropical hypersurface W and some li ∈ L. For f ∈ (H ⋊R)[x] we
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abbreviate gmultHL (V (f)) = gmultHL (f).

Remark 4.3.21. Since K∗ only consists of one element, tropical hypersurfaces and K-

enriched tropical hypersurfaces are equivalent. In particular, for H = K the definition of

gmultK of Definition 4.3.20 agrees with the definition of gmultK from Definition 4.3.14.

Lemma 4.3.22. Let f ∈ (H ⋊ Γ)[x] and let L ⊆ (H ⋊ Γ)[x] be a set of polynomials of

degree 1 that are not monomials. Then we have

multH⋊Γ
L (f) ≤ gmultHL (f).

Proof. The assertion is a direct consequence of Lemma 4.3.19.

Example 4.3.23.

(a) As noted in Remark 4.3.21, geometric multiplicity and enriched geometric multiplicity

coincide over K. In particular, Example 4.3.15 (a) can be seen as an example

where the enriched geometric multiplicity is strictly smaller than the multiplicity.

Morally speaking, any discrepancy between the geometric multiplicity and (hyperfield)

multiplicity in that example is entirely due to the valuations, replacing geometric

multiplicity with enriched geometric multiplicity will not reduce the discrepancy.

(b) Let f = 0−x+ y ∈ TR and l = 0+x+ y, as in Example 4.3.15. Then gmultSl (f) =

gmultKl (f) = 0.

♢

Lemma 4.3.24. Let V ⊆ Rn be anH-enriched tropical hypersurface and let l ∈ (H⋊R)[x]

be a linear form. If gmultKl (V ) > 1, then gmultHl (V ) ≥ 1. In particular, we either have

gmultHl (V ) = gmultKl (V ) or gmultHl (V ) = gmultKl (V )− 1.

Proof. Let W be the unique tropical hypersurface with W + V (lν) = V as tropical hyper-

surfaces. Because gmultKl (V ) > 1, we have V (lν) ⊆ W , and hence Rn \ V = Rn \W .
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Denote by s and t the enrichments of V and V (l), respectively. Let C be a component of

Rn \W and let C ′ be the unique component of Rn \ V (lν) containing C. Then we can

enrich W by assigning to C the element s(C) · t(C ′)−1 ∈ H∗. By construction, we then

have W + V (lν) = V as enriched tropical hypersurfaces. This shows that gmultHl (V ) ≥ 1.

The remainder of the assertion follows by induction.

Definition 4.3.25. We call a polynomial f ∈ (H ⋊R)[x] strictly convex if f ν ∈ T[x] is

strictly convex.

Proposition 4.3.26. Let Γ be a subgroup of R, let H be a hyperfield, let f ∈ (H ⋊ Γ)[x] be

a dense strictly convex polynomial, and let l ∈ (H ⋊ Γ)[x] be a degree-1 polynomial that

is not a monomial and such that gmultHl (f) > 0. Then there exists a unique polynomial

g ∈ (H ⋊ Γ)[x] with and f ∈ g · l and in fact g is dense, strictly convex, and we have

{f} = g · l.

Proof. Let W be an enriched tropical hyperplane such that W + V (l) = V (f) and let

g ∈ (H ⋊ Γ)[x±1] with V (g) = W . Then V (PFg ⊙ PFl) = W + V (l) = V (PFf ) and

therefore PFg ⊙ PFl and PFf differ by a linear function. After multiplying g by a suitable

monomial, we may thus assume that PFg ⊙ PFl = PFf . For every h ∈ g · l, we have

PFh = PFf by Lemma 4.3.19. But since f is dense and strictly convex this is only possible

if f = h. We conclude that g · l = {f}.

Now let g′ ∈ (H ⋊ Γ)[x±1] with f ∈ g′ · l. We will first show that g′ is strictly convex.

Let P be a maximal polytope in the Newton subdivision of g. It corresponds to some

vertex p of V (g). Let Q be the polytope in the Newton subdivision of l, corresponding

to the stratum of V (l) containing p. Then the polytope in the Newton subdivision of f

corresponding to p is given by the Minkowski sum P +Q. Let v be a vertex of Q and let

w be a lattice point contained in P . Then w + v is a lattice point of P +Q. Because f is

dense and strictly convex, this implies that w + v is a vertex of P +Q and hence a vertex

of P + v. Therefore, w is a vertex of P . We conclude that every lattice point in the Newton
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polytope of g′ is a vertex of the Newton subdivision of g′, which implies that g′ is dense and

strictly convex. We can now show that g′ = g. Because

PFg ⊙ PFl = PFf = PFg′ ⊙ PFl,

we have PFg = PFg′ . But by what we just showed, both g and g′ are strictly convex and

hence uniquely determined by their enriched polynomial functions. We conclude that g = g′.

Finally, note that l has order 0 with respect to each of the variables xi. Therefore, the

order of g coincides with the order of f with respect to each of the variables xi. It follows

that g is a polynomial, that is g ∈ (H ⋊ Γ)[x].

Corollary 4.3.27. Let Γ be a subgroup of R, let H be a hyperfield, and let f ∈ (H ⋊ Γ)[x]

be a dense strictly convex polynomial. Moreover, let L ⊆ (H ⋊ Γ)[x] be a set of degree-1

polynomials not containing a monomial. Then we have

gmultHL (f) = multH⋊Γ
L (f).

Proof. By Lemma 4.3.22, we need to show that

gmultHL (f) ≤ multH⋊Γ
L (f).

We do induction on n = gmultHL (f), the base case n = 0 being trivial. For n > 0, there

exists an H-enriched tropical hypersurface W and a polynomial l ∈ L with gmultHL (W ) =

n− 1 and W + V (l) = V (f). In particular gmultHl (f) > 0. By Proposition 4.3.26, there

exists a dense strictly convex polynomial g ∈ (H ⋊ Γ)[x] with f ∈ g · l. In particular, we

have V (f) = V (g) + V (l) by Lemma 4.3.19 and hence V (g) = W . Using the induction

hypothesis, we conclude that

gmultHL (f) = 1 + gmultHL (g) ≤ 1 + multH⋊Γ
L (g) ≤ multH⋊Γ

L (f).
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4.3.5 Relative hyperfield multiplicity

Definition 4.3.28. Let φ : H1 → H2 be a morphism of hyperfields and let ∅ ≠ F ,L ⊆ H2[x]

such that the degree is bounded on F . The relative multiplicity of F at L with respect to φ,

denoted by multφL(F), is given by

multφL(F) = multH1

φ−1L(φ
−1F).

Proposition 4.3.29. Let φ : H1 → H2 be a morphism of hyperfields and let ∅ ≠ F ,L ⊆

H2[x] such that the degree is bounded on F . Then we have

multφL(F) ≤ multH2
L (F).

Proof. This is follows immediately from Lemma 4.3.5 applied to the morphism H1[x] →

H2[x] induced by φ.

Example 4.3.30.

(a) Let K be a field and let ν0 : K → K be the trivial valuation. Let d ∈ Z>0 be coprime

to the characteristic of K, and let f = 1 + xd + yd and l = 1 + x + y be elements

in K[x, y]. We have already seen in Example 4.3.3 that multKl (f) = d. To compute

the relative multiplicity with respect to ν0, let g = a + bxd + cyd ∈ K[x, y] be any

polynomial with gν0 = f . Since a+ cyd has only simple roots, Eisenstein’s criterion,

applied with respect to any prime factor of a+ cyd, shows that g is irreducible. We

conclude that

multK
ν−1
0 {l}(g) =


1 if d = 1,

0 else,
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and therefore

multν0l (f) =


1 if d = 1,

0 else.

(b) We keep the setting of part (a), but instead take f =
∑

|m|≤d x
m. If K is infinite, then

for d generic linear forms l1, . . . , ld ∈ ν−1
0 {l} we have

(∏d
i=1 li

)ν0
= f , and hence

multν0l (f) = multKl (f) = d. If the field K is finite, things are more complicated. For

example, if K = F2 and d = 2, then multν0l (f) = 0. ♢

Example 4.3.31. For the morphism sign: R → S, the hyperfield multiplicity can be strictly

larger than the relative hyperfield multiplicity, even for dense polynomials. Consider the

polynomial

f =

+

− +

+ − −
+ − + +

∈ +

+ +
·

+

− −
+ − +

.

The given factorization of f is the unique way to factor out l = 1 + x+ y, so we see that

multSl (f) = ∂-multSl (f) = 1. However, there exists no degree-2 polynomial g ∈ R[x, y]

such that (1+x+y)g has the given sign pattern. Assume on the contrary that such g existed.

We may assume that g(0, 0) =, and write g(x, y) = 1− ax− by + cx2 − dxy + ey2, where

a, b, c, d, e are positive reals. Then we have

(1+x+ y)g(x, y) = 1+(1−a)x+(1− b)y+(c−a)x2+(−a− b−d)xy+(e− b)y2+

+ cx3 + (c− d)x2y + (−d+ e)xy2 + ey3.
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This product having the signs of f is equivalent to

1 < a 1 > b

c > a e < b

c < d e > d,

from which we obtain a chain

1 < a < c < d < e < b < 1.

A contradiction! ♢

Proposition 4.3.32. Let K be a field, H a hyperfield, Γ ⊆ R a totally ordered group, and

let φ : K → H ⋊ Γ be a surjective morphism of hyperfields. Moreover, let f ∈ (H ⋊ Γ)[x]

be a dense strictly convex polynomial, and let L ⊆ (H ⋊ Γ)[x] be a set of polynomials of

Newton-degree 1. Then we have

multφL(f) = multH⋊Γ
L (f).

Proof. By Proposition 4.3.29, we have multφL(f) ≤ multH⋊Γ
L (f). We show the reverse

inequality by induction on m = multH⋊Γ
L (f). The base case m = 0 is trivial, so we may

assume that m > 0, in which case we have m = 1 +multH⋊Γ
L ((f : L)). By Lemma 4.3.4,

there exists g ∈ (f : L) with multH⋊Γ
L ((f : L)) = multH⋊Γ

L (g), and by definition of (f : L)

we have f ∈ g · l for some l ∈ L. By Proposition 4.3.26, the polynomial g is dense, strictly

convex, and g · l = {f}, so by the induction hypothesis we have

multH⋊Γ
L (g) = multφL(g) = multKφ−1L(φ

−1{g}).
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Again by Lemma 4.3.4, there exists g̃ ∈ φ−1{g} with

multKφ−1L(φ
−1{g}) = multKφ−1L(g̃).

Let l̃ ∈ φ−1{l}. Then we have

(g̃ · l̃)φ ∈ g · l = {f},

that is (g̃ · l̃)φ = f . It follows that

multφL(f) = multKφ−1L(φ
−1{f}) ≥ multKφ−1L(g̃ · l̃) ≥ 1 + multKφ−1L(g̃) = m.

4.3.6 Perturbation multiplicity

One technique for analyzing the roots of a polynomial in C[x] is to perturb the coefficients

within the field of Puiseux series C[[tQ]] and consider a homotopy as t→ 0. By analogy, if

we want to compute a multiplicity over a hyperfieldH , we can consider the same multiplicity

in H ⋊R after a small perturbation. We will only consider strictly convex pertubations; in

the case where the polynomial f ∈ H[x] we start with is dense, this allows us to bound the

multiplicity of f from below by H-enriched geometric multiplicities, which are much easier

to compute than hyperfield multiplicities.

For this multiplicity, we work over S. The sign hyperfield is special in that the inclusion

S → S⋊R = TR splits canonically. That is, the angular component map ac : TR → S is a

morphism of hyperfields.

Remark 4.3.33. A tropical extension consists of an exact sequence of groups 1 → H∗ →

E∗ → Γ → 1 meaning im(H∗ → E∗) = eq(1, E∗ → Γ). The corresponding sequence of

hyperrings 0 → H → E → K⋊ Γ → 0 is not necessarily exact because eq(1, E∗ → Γ) is

155



only the multiplicative kernel. So despite having a section Γ → H ⋊ Γ, γ 7→ tγ , we should

not expect that the angular component map ac : H ⋊ Γ → H is a morphism.

Definition 4.3.34. Let f ∈ S[x] and let l ∈ S[x] be a linear form. Let F denote the subset

of ac−1{f} consisting of strictly convex polynomials in TR[x]. We define the perturbation

multiplicity of l in f , denoted ϵ-multSl (f) by

ϵ-multSl (f) = multTRac−1{l}(F).

Corollary 4.3.35. Let f ∈ S[x] and let l ∈ S[x] be a linear form. Then we have

ϵ-multSl (f) ≤ multSl (f).

If f is dense, F ⊂ TR[x] is the set of all strictly convex polynomials in ac−1(f), and l is not

a monomial, then

ϵ-multSl (f) = gmultSac−1{l}(F)

Proof. The inequality is a direct consequence of Lemma 4.3.5, the equality a direct conse-

quence of Corollary 4.3.27.

Remark 4.3.36. Given a dense polynomial f ∈ S[x] and a linear form l ∈ S[x], the

equality ϵ-multSl (f) = gmultSac−1{l}(F) from Corollary 4.3.35 reduces the computation

of ϵ-multSl (f) to a finite problem, that is only finitely many multiplicities gmultSac−1{l}(f̃)

for f̃ ∈ F need to be computed. Indeed, the condition that V (f̃) = W + V (l̃) for

some S-enriched tropical hypersurface W and some l̃ ∈ ac−1{l} does not depend on the

exact position of the vertices of the S-enriched tropical hypersurface V (f̃), but only its

combinatorial type. Expressed dually, gmultSac−1{l}(f̃) only depends on l, f , and the Newton

subdivision of f̃ , for which there are only finitely many choices.

Now assume we are in two variables and we are given a strictly convex f̃ in ac−1{f}.

If V (f̃) = W + V (l̃) as above, then the Newton subdivision of f is a mixed subdivision
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of the Newton subdivisions of W and V (l̃). Because f̃ is dense and strictly convex, every

lattice point of Newt(f̃) appears as a vertex of the Newton subdivision of f̃ . This can only

happen if W and V (l̃) meet transversally with intersection multipliciy 1. Therefore, every

cell in the mixed subdivision of W and V (l̃) either is a translate of a cell in the Newton

subdivision of W or V (l̃), or a parallelogram of volume 1. Since V (f̃) = W + V (l̃) needs

to hold on the level of S-enriched tropical hypersurfaces, the signs of f and l give additional

constraints on which mixed subdivisions can appear for f . Namely, each translate of a

cell of the Newton subdivision of W and V (l̃) has to have the same signs as in W or V (l̃)

or exactly opposite signs, and each parallelogram has to be of the following form, up to

translation and the action of GL2(Z):

+ +

+ +

+ −

+ −

+ −

− +

Example 4.3.37. With the notation as in Remark 4.3.36, let f̃ ∈ TR[x, y] be a polynomial

of Newton-degree 5 with f ac and its Newton subdivision as in Figure 4.5 on the top left.

Then the Newton subdivision can be realized as a mixed subdivision of subdivisions of

the 4-simplex and the Newton polytope of l = 1 + x+ y (the 1-simplex) by declaring the

triangle in dark purple in the figure as the unique unmixed cell coming from the 1-simplex,

and declaring the light purple cells as the mixed cells. The dark purple unmixed cell has

the same sign pattern as the Newton polytope of l and the mixed cells all have the allowed

sign patterns outlined in Remark 4.3.36. We can conclude that V (f̃) = W + V (l̃) for

some S-enriched tropical hypersurface W and some l ∈ ac−1{l}. Moreover, the procedure

determines the subivision and signs of the Newton polytope of W : simply remove the cells

in purple and push together the remaining cells. The result is depicted on the lower left

of Figure 4.5. Note that this procedure can be repeated with the all-negative triangle and

suitably chosen mixed cells, giving a total geometric multiplicity of gmultSac−1{l}(f̃) = 2.

Finally, the right of Figure 4.5 shows the dual tropical picture. The given Newton
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Figure 4.5: Sign compatible subdivision, quotient with induced subdivision, and associated
tropical hypersurfaces.
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subdivision of f̃ makes V (f̃ ν) a union of tropical lines. The tropical line L in purple on

the top right corresponds to the purple cells and what we phrased in terms of subdivisions

above is that there exists an S-enrichment L̃ of L and an S-enriched tropical hypersurface

W such that V (f̃) = W + L̃ and L̃ = V (l̃) for some l̃ ∈ ac−1{l}. The S-enriched tropical

hypersurface W is depicted on the bottom right.

♢

Example 4.3.38. The perturbation multiplicity can also be defined over hyperfields H for

which the angular component ac : H ⋊ R → H is not a morphism. However, in these

settings the inequality ϵ-multHl (f) ≤ multHl (f) will fail to hold in general. Consider the

polynomial

f(x, y) = 0 + 1x+ y + 1x2 + 1xy + y2 ∈ T[x, y]

and let l = 0+ x+ y ∈ T[x, y]. Then multTl (f) = gmultTl (f) = 0. Now extend from T to

T⋊R (using reverse lexicographic order). We have

[(0, 0) + (0, 0)x+ (0, 0)y] · [(0, 0) + (1,−1)x+ (0, 1)y]

= (0, 0) + (1,−1)x+ (0, 0)y + (1,−1)x2 + (1,−1)xy + (0, 1)y2

This is a strictly convex polynomial whose (coefficient-wise) angular component is f , so

ϵ-multTl (f) ≥ 1. ♢

Proposition 4.3.39. Let f ∈ S[x] be dense and let l ∈ S[x] be of Newton-degree 1.

Moreover, let K be a valued real closed field with value group R. Then we have

ϵ-multSl (f) ≤ multsignl (f).

Proof. By Lemma 4.3.4, there exists a polynomial g ∈ ac−1{f} ⊆ TR[x], which is strictly

convex and where ϵ-multSl (f) = multTRac−1{l}(g). Because f is dense, g is dense as well. By
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the definition of the relative multiplicity and Proposition 4.3.32, we have

multKsign−1{l}(νsgn
−1{g}) = mult

νsgn
ac−1{l}(g) = multTRac−1{l}(g).

As νsgn−1{g} ⊆ sign−1{f}, we conclude that

multsignl (f) = multKsign−1{l}(sign
−1{f})

≥ multKsign−1{l}(νsgn
−1{g}) = multTRac−1{l}(g).

Example 4.3.40. The perturbation multiplicity can be strictly smaller than the relative

multiplicity with respect to sign, even for dense polynomials. To see this, consider the

polynomial

f =

−
− +

+ − −
+ + + −

∈ +

+ +
·

−
− +

+ + −

and let l = 1 + x+ y. The given factorization of f is the unique way to factor out l, so we

see that multSl (f) = ∂-multSl (f) = 1. We also have

f =
(
(1 + x+ y)(1 + .5x− .3y)(1− .33x+ .01y)

)sign
,

so that multsignl (f) = 1 as well. However, there is no signed mixed subdivision containing a

positive or negative triangle, so ϵ-multSl (f) = 0. ♢

4.3.7 Multiplicities over S in degree 2

Since multiplicities in degree 1 are trivial, we now study in detail the first interesting case of

polynomials of Newton-degree 2. We work entirely over the hyperfield S.

Proposition 4.3.41. Let H be a hyperfield, let f ∈ H[x] be a polynomial of Newton-degree
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2 in n ≥ 2 variables and let l ∈ S[x] be of Newton-degree 1. Then we have

∂-multSl (f) = multSl (f).

Proof. To simplify notation, we homogenize both l and f , introducing a new variable x0.

After scaling the variables appropriately, we may further assume that l =
∑n

i=0 xi. Let A be

the support of f and write f =
∑

a∈A cax
a. Let h =

∑n
i=0 c2eixi, where e0, . . . , en denotes

the standard basis of Zn+1. Whenever f ∈ l · g, the square terms c2eix
2
i , of f uniquely

determine g. More precisely, f ∈ l · g implies that g = h.

For 0 ≤ i ≤ n let πi : H[x0, . . . , xn] → H[x0, . . . , x̂i, . . . , xn] be the morphism sending

xi to 0 and xj to xj for j ̸= i. For each 0 ≤ i ≤ n, the polynomial πi(f) also has Newton-

degree 2. Therefore, the same reasoning as for f applies to πi(f) and πi(f) ∈ πi(l) · g

implies g = πi(h). Because all monomials of f only involve two variables and n ≥ 2, we

have f ∈ l · h if and only if πi(f) ∈ πi(l) · πi(h) for all 0 ≤ i ≤ n. By what we have

observed, this implies that multHl (f) ≥ 1 is equivalent to ∂-multHl (f) ≥ 1. Moreover, we

have multHl (f) = 2 if and only if multHl (f) ≥ 1 and h and l differ by a factor in H∗. On

the other hand, h and l differ by a factor in H∗ if and only if πi(h) and πi(l) differ by a

factor in H∗ for all 0 ≤ i ≤ n, so that multHl (f) = 2 is equivalent to ∂-multHl (f) = 2.

Theorem 4.3.42. Let f ∈ S[x, y] be a dense polynomial of Newton-degree 2 and let

l ∈ S[x, y] be of Newton-degree 1. Then we have

ϵ-multSl (f) = multsignl (f) = multSl (f) = ∂-multSl (f).

Proof. In light of the inequalities from Proposition 4.3.39, Proposition 4.3.29, and Corol-

lary 4.3.7, it suffices to show that

ϵ-multSl (f) = ∂-multSl (f).
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There are 64 dense polynomials in S[x, y] of Newton-degree 2, but using symmetry we can

group these into 4 cases. First, consider the corners of the Newton polytope. By multiplying

everything by −1, we may assume that either 2 or 3 of the corners are +. Additionally, if we

view these sign arrangements as a homogeneous polynomial f(x, y, z) ∈ S[x, y, z] then we

can make use of the symmetries x↔ y, x↔ z and y ↔ z to permute the corners arbitrarily.

This splits the 64 polynomials into two categories:

+

∗ ∗

+ ∗ +

and

+

∗ ∗

+ ∗ −

.

Secondly, we have the symmetries x ↔ −x, y ↔ −y and z ↔ −z which affect the

middle signs as indicated in Figure 4.6. Using these symmetries, we can assume that at least

+
∗ ∗
+ ∗ −

row×(−1)

column×(−1)

diagonal×(−1)

Figure 4.6: Transformations x↔ −x, y ↔ −y, z ↔ −z.

2 of the middle signs are +, and that leaves us with just 4 cases which we number as in

Figure 4.7.

We now need to show that ϵ-multSl (f) = ∂-multSl (f) for all Newton-degree-1 polyno-

mials l ∈ S[x, y]. After scaling, we may assume that l = 1 + sx + ty for some s, t ∈ S∗.

In all four cases, the constant, the y, and the y2 coefficient are positive, so ∂-multSl (f) = 0

unless t = 1. In case 1, we have ∂-multSl (f) = 0 if s = −1 and

∂-multSl (f) = 2 = ϵ-multSl (f)

162



+

+

+

++

+

Case 1

+
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+

Case 2

+

+

− ++

+

Case 3

+

+

− −+

+

Case 4

Figure 4.7: The 4 cases of Newton-degree 2 sign configurations and subdivisions.

if s = +1, where the subdivision realizing the perturbation multiplicity is depicted in

Figure 4.7. In case 3, we have ∂-multSl (f) = 0 for any choice of s. In cases 2 and 4, we

have

∂-multl(f) = 1 = ϵ-multl(f)

for all s ∈ S∗, where the subdivision realizing the perturbation multiplicity is depicted in

Figure 4.7 (the same subdivision works for both choices of s).

Example 4.3.43. In dimension at least 3, there exist dense quadratic polynomials with

multsign1+
∑

xi
(f) < multS1+∑

xi
(f). To see this, consider the polynomial

f = 1 + x+ y − z − xy − xz + yz − x2 + y2 − z2 ∈ S[x, y, z].

Let l = 1 + x+ y + z. Then we check that

f ∈ (1 + x+ y + z)(1− x+ y − z)

over S and hence multSl (f) = 1. Now assume multsignl (f) = 1. Then there exist poly-

nomials g, h ∈ R[x, y, z] with (g · h)sign = f and gsign = l. After first scaling g such

163



that its constant coefficient is 1 and then rescaling each variable, we may assume that

g = 1+x+y+z. Write h = a+ bx+ cy+dz for a, b, c, d ∈ R. Looking at the coefficients

of x, xy, yz, and z in gh we obtain the inequalities

a+ b > 0

b+ c < 0

c+ d > 0

a+ d < 0,

which leads to the contradiction

a > −b > c > −d > a. ♢

Theorem 4.3.44. Let f ∈ S[x, y] be a (not necessarily dense) polynomial of Newton-degree

2, and let l ∈ S[x, y] be of Newton-degree 1. Then we have

multsignl (f) = multSl (f) = ∂-multSl (f).

Proof. By Theorem 4.3.42 we only need to treat the cases where f is not dense, and by

Proposition 4.3.29 and Corollary 4.3.7 is suffices to show that

multsignl (f) = ∂-multSl (f)

If a coefficient of a middle term (e.g. x) in f is zero, then ∂-multSl (f) is zero unless the

coefficients of the adjacent corners of the Newton polytope (e.g. 1 and x2) have different

signs. Therefore, if all three middle terms of f are zero, we have ∂-multSl (f) = 0. We may

thus assume that either one or two middle terms are zero. After interchanging variables (as
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+

+ +

+ 0 −

Case 1

−
+ +

+ 0 −

Case 2

−
0 +

+ 0 −

Case 3

Figure 4.8: The 3 non-dense cases needed to be checked after all reductions.

in the proof of Theorem 4.3.42), we may assume that either only the x-coefficient is zero

or the x- and y-coefficient are both zero. After scaling f by a unit, we may assume that

the constant coefficient is 1, in which case we may assume that the x2-coefficient is −1. If

the y-coefficient is also zero, we may also assume that the y2-coefficient is −1. Using the

transformations x↔ −x and y ↔ −y we may assume that the non-zero middle terms have

coefficient 1. This leaves us with three cases for f , as depicted in Figure 4.8. After rescaling

l, we may assume that the constant coefficient of l is 1.

In case 1, we have ∂-multSl (f) = 0 unless l = 1±x+y, in which case ∂-multSl (f) = 1.

We also have

f =
(
(1 + x+ y)(1− x+ 2y)

)sign
.

This shows that ϵ-multSl (f) = 1 for either choice of l.

In case 2, we have ∂-multSl (f) = 0 unless l = 1±x∓y, in which case ∂-multSl (f) = 1.

We also have

f =
(
(1 + x− y)(1− x+ 2y)

)sign
.

This shows that ϵ-multSl (f) = 1 for either choice of l.

In case 3, we have ∂-multSl (f) = 0 unless l = 1±x∓y, in which case ∂-multSl (f) = 1.

We also have

f =
(
(1 + x− y)(1− x+ y)

)sign
.

This shows that ϵ-multSl (f) = 1 for either choice of l.

Example 4.3.45. If f ∈ S[x, y] is quadratic but not dense, and l ∈ S[x, y] has degree 1, it is
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−

−

+

+

Figure 4.9: The only Newton subdivision including the support of 1 − x2 + xy − y2 as
vertices.

possible that ϵ-multSl (f) < multSl (f). For example, consider the polynomial

f(x, y) = 1− x2 + xy − y2 ∈ S[x, y]

and let

l(x, y) = 1 + x− y.

Then we have multSl (f) = ∂-multSl (f) = 1. On the other hand, the only subdivision

of the Newton polytope of f that appears as the Newton subdivision of a strictly convex

polynomial in ac−1{l} is depicted in Figure 4.9. Since the tropical hypersurface associated

to any polynomial h ∈ TR[x, y] with that Newton subdivision can never contain a tropical

line, we have gmultKac−1{l}(h) = 0 and hence multTRac−1{l}(h) = 0 by Lemma 4.3.22. In

particular, we have

ϵ-multSl (f) = 0 < 1 = multSl (f). ♢

4.4 Systems of equations over hyperfields

Let K be a field with a morphism φ : K → H to a hyperfield H , let f1, . . . , fn ∈

H[x1, . . . , xn], and let h ∈ (H∗)n. In this section, we study the number

Nφ
h (f1, . . . , fn) = max

{∣∣∣⋂V (gi) ∩ φ−1{h}
∣∣∣ : gφi = fi,

∣∣∣⋂V (gi)
∣∣∣ <∞

}
.
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In the case where H = S (resp. H = T), this is the maximum number of solutions with

given signs (resp. given valuations) that a system of equations with given supports and signs

(resp. valuations) can have, provided it has finitely many solutions. Our technique to bound

this number is via sparse resultants, which translate the problem of finding solutions to

a system of equations into the problem of finding linear factors of a single multivariate

polynomial.

4.4.1 Sparse resultants

Let A0, . . . , An be subsets of Zn
≥0. For each 0 ≤ i ≤ n and a ∈ Ai introduce a variable

ci,a. Then the (sparse mixed) resultant R = RA0,...,An of A0, . . . , An is the unique (up to

scaling) irreducible integer polynomial in the variables ci,a, which vanishes precisely when

the intersection
n⋂

i=0

V

(∑
a∈Ai

ci,ax
a

)
∩ (K∗)n (4.2)

is nonempty for some (and hence any) algebraically closed field K of characteristic 0. We

expect the intersection to be nonempty on a codimension 1 set because there is one more

equation than variables (x1, . . . , xn). Only if the codimension is indeed 1 the resultant is

well-defined; otherwise one sets R = 1. For more on resultants, we refer the reader to the

book of Gelfand-Kapranov-Zelevinsky [GKZ94]. The resultants we use here are the mixed

(A0, . . . , An)-resultants covered in Chapter 8 of their book.

Given n+ 1 polynomials in n-variables, say gi =
∑

a∈Ai
di,ax

a ∈ H[x] for 0 ≤ i ≤ n

over some hyperfield H , we denote by Rg0,...,gn the set (we get a set because hyperaddition

is multivalued) of polynomials obtained by substituting di,a for ci,a in RA0,...,An . If only n

polynomials in n variables are given, say the polynomials g1, . . . , gn with the expressions as

before, we introduce new variables y1, . . . , yn and set

Rg1,...,gn = R1+
∑

yixi,g1,...,gn ⊆ H[y],
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substituting yi for the variables c0,ei corresponding to

A0 = {0} ∪ {ei : 1 ≤ i ≤ n},

where ei denotes the i-th standard basis vector in Zn
≥0.

The fact that resultants translate the problem of finding solutions to systems of equations

to the problem of finding linear factors of a polynomial already mentioned above, is made

precise in the following lemma.

Lemma 4.4.1. Let K be a field of characteristic 0 and let φ : K → H be a morphism of

hyperfields. Moreover, let h ∈ (H∗)n, let l = 1 +
∑n

i=1 hixi ∈ H[x], and let g1, . . . , gn ∈

K[x] generic with respect to their support and such that R = Rg1,...,gn is not constant. Then

we have ∣∣∣∣∣
n⋂

i=1

V (gi) ∩ φ−1{h}

∣∣∣∣∣ = multKφ−1{l}(R).

Proof. Because the coefficients of the gi are generic with respect to their supports, the

intersection
n⋂

i=1

V (gi)

is transverse and consists of D := deg(R) many distinct points

pj = (pj1, . . . pjn) ∈ (K
∗
)n, 1 ≤ j ≤ D.

Then the intersection
n⋂

i=1

V (gi) ∩ V

(
1 +

n∑
i=1

yixi

)
is nonempty if and only if

1 +
n∑

i=1

pjiyi = 0
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for some 1 ≤ j ≤ D, which happens, by definition of the resultant, if and only if

R(y1, . . . , yn) = 0.

Because D is the degree of R, it follows that R differs from

D∏
j=1

(
1 +

n∑
i=1

pjiyi

)

by a unit. The assertion now follows from the observation that φ(pj) = h if and only if

(
1 +

n∑
i=1

pjiyi

)φ

= l.

An important observation in the proof of the preceding lemma is that a resultant Rg1,...,gn

is (up to a unit), the product of the linear forms 1 +
∑
pjiyi corresponding to the common

roots pj of the system

g1(x) = . . . = gn(x) = 0

in the algebraic closure of the ground field. Let us illustrate this with an example.

Example 4.4.2. Take the line f(x, y) = 3x + 4y − 5 and intersect it with the circle

g(x, y) = x2 + y2 − 1. These two polynomials have one intersection point [3 : 4 : 5] ∈ P2,

with multiplicity 2. The resultant of f and g in the variables u, v is therefore proportional to

(3u+ 4v + 5)2.

Let us show an example computation using the Singular computer algebra system [Sing].

system("random", 12341234);

// other seeds lead to different monomial factors

ring R = 0,(u,v),dp;

ring S = R,(x,y),dp;

ideal I = 3x + 4y - 5, x2 + y2 - 1, 1 + ux + vy;
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string s = string(det(mpresmat(I, 0)));

// use a string to get this polynomial from S to R

// s = (9u2+24uv+30u+16v2+40v+25)

setring R;

execute("poly p = " + s);

factorize(p);

// Output (factors and multiplicities)

// [1]:

// _[1]=1

// _[2]=3u+4v+5

// [2]:

// 1,2 ♢

4.4.2 Tropically transverse intersections

We will now study the cases where H = T or H = TR, where φ : K → H is either a

valuation ν or a signed valuation νsgn, and where the intersection

n⋂
i=1

V (f ν
i )

in Rn is transverse. Recall that this means that
⋂n

i=1 V (f ν
i ) is finite and every h ∈⋂n

i=1 V (f ν
i ) is contained in the relative interior of a maximal cell of V (f ν

i ) for all 1 ≤ i ≤ n.

For every choice of gi ∈ φ−1{fi} and h ∈
⋂n

i=1 V (gi) ∩ (K∗)n we then have φ(h) ⊆⋂
V (f ν

i ). Therefore, we have

Nφ
h (f1, . . . , fn) = 0

for all h /∈
⋂n

i=1 V (f ν
i ).

Now suppose h ∈
⋂n

i=1 V (f ν
i ). Then for every 1 ≤ i ≤ n, the initial form inh(fi) is a

binomial, say fi = aix
si − bix

ti . We define the intersection multiplicity mK(h; f ν
1 · · · f ν

n))
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as

mK(h; f ν
1 · · · f ν

n) =

∣∣∣∣∣∣∣∣∣∣


s1 − t1

...

sn − tn


∣∣∣∣∣∣∣∣∣∣
.

Lemma 4.4.3 ([HS95, Lemma 3.2]). Let h ∈
⋂n

i=1 V (f ν
i ) and for 1 ≤ i ≤ n let gi be

polynomials with gν0i = inh(fi)
ν0 over an algebraically closed field of characteristic 0. Then⋂n

i=1 V (gi) contains precisely mK(h; f1 · · · fn) many distinct points.

Now suppose that fi ∈ TR[x], and still assume that V (f ν
1 ), . . . , V (f ν

n) intersect transver-

sally. Let h ∈ ν−1
⋂n

i=1 V (f ν
i ) ⊆ (TR∗)n. Then inν(h)(fi) is a binomial for all 1 ≤ i ≤ n.

Following [IR96], we say that h is alternating if the two coefficients of the binomial

inν(h)(fi) have opposite signs for all 1 ≤ i ≤ n. If ac(h) = (1, . . . , 1), we define the signed

multiplicity mS(h; f1 · · · fn) by

mS(h; f1 · · · fn) =


1 if h ∈

⋂n
i=1 V (f ν

i ) and h is alternating,

0 else.

For general h, let |h| = (ac(h1)h1, . . . , ac(hn)hn) and for 1 ≤ i ≤ n denote

fh
i (x1, . . . , xn) = fi(ac(h1)x1, . . . , ac(hn)xn),

where we identify S∗ with ν−1{0} = {±t0} ⊆ TR. The signed multiplicity is then given by

mS(h; f1 · · · fn) = mS(|h|; fh
1 · · · fh

n ).

Lemma 4.4.4 ([IR96, Lemma 2]). Let K be a real closed field. Suppose we have binomials

g1, . . . , gn ∈ K[x] such that the affine span of all the Newton polytopes of the gi is Rn. If

for some 1 ≤ i ≤ n, the coefficients of the two monomials of gi have the same sign, then the
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intersection
n⋂

i=1

V (gi) ∩ (K>0)
n

is empty. Otherwise, it is a singleton.

In particular, suppose f1, . . . , fn ∈ TR[x] and h ∈ (TR∗)n are chosen such that

V (f ν
1 ), . . . , V (f ν

n) intersect transversally at ν(h). If gi ∈ sign−1{inν(h)(fi)}, then we have

∣∣∣∣∣
n⋂

i=1

V (gi) ∩ sign−1{ac(h)}

∣∣∣∣∣ = mS(h; f1 · · · fn).

Proof. The statement about the positive common roots of the gi is proven in [IR96, Lemma

2]. The “in particular” statement follows directly from that in the case where ac(h) =

(1, . . . , 1). The general case is reduced to that case by the coordinate change xi 7→ ac(hi)xi.

We have the following relationship between the initial form of a resultant and the

resultant of initial forms.

Proposition 4.4.5. Let (K, ν) be a valued field of characteristic 0, equipped with a splitting

of the valuation, and let gi ∈ K[x] for 1 ≤ i ≤ n. Assume that V (gν1 ), . . . , V (gνn) intersect

transversally at h ∈ Rn. Then in−hRg1,...,gn and Rinh(g1),...,inh(gn) differ by a polynomial q

with

multν−1
0 {1+

∑n
j=1 xj}(q) = 0.

Proof. For 1 ≤ i ≤ n denote the support of gi by Ai and let

A0 = {0} ∪ {ei : 1 ≤ i ≤ n},

where ei denotes the i-th standard basis vector. Moreover, let R = RA0,...,An be the resultant

of the supports, which is a polynomial in coefficients ci,a, where 0 ≤ i ≤ n and a ∈ Ai. We

defined Rg1,...,gn as a polynomial in variables y1, . . . , yn, but in this proof we will substitute
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c0,ei for yi and view Rg1,...,gn as a polynomial in the variables c0,e1 , . . . , c0,en . Then Rg1,...,gn

is obtained by plugging 1 for c0,0 and di,a for ci,a for i > 0 and a ∈ Ai into R. We note that

R is homogeneous in the coefficients c0,0, c0,e1 , . . . c0,en , so plugging in 1 for c0,0 amounts

to dehomogenizing. Therefore, in−h(Rg1,...,gn) is equal to the polynomial we obtain by

plugging in 1 for c0,0 into the initial form

in(0,−h)R ((c0,a)a∈A0 , (di,a)i>0,a∈Ai
) ,

where the additional 0 in (0,h) means that we give c0,0 weight zero. Let

w = (0,−h, (ν(di,a))i>0, a∈Ai
).

We view w as a weight on R
⊔n

i=0 Ai . If for a monomial M of R, we denote M ′ =

M((c0,a)a∈A0 , (di,a)i>0,a∈Ai
), then the w-weight of M with respect to the trivial valuation

ν0 equals the (0,−h)-weight of M ′ with respect to ν (note that R has integer coefficients).

It follows that if

(in0
w(R))((c0,a)a∈A0 , (ac(di,a))i>0, a∈Ai

) ̸= 0,

where the superscript 0 in in0 indicates that we take the initial form with respect to the trivial

valuation, then we have

in(0,−h)(R((c0,a)a∈A0 , (di,a)i>0, a∈Ai
))

= (in0
w(R))((c0,a)a∈A0 , (ac(di,a))i>0, a∈Ai

).

To finish the proof, we compute (in0
w(R))((c0,a)a∈A0 , (ac(di,a))i>0, a∈Ai

) and, in particular,

show that it is non-zero. To this end, let g0 = 1 +
∑n

i=1 c0,eixi, and let ∆ be the polyhedral

complex in Rn, the relative interior of whose faces are precisely the equivalence classes of

the relation

w1 ∼ w2 ⇐⇒ inw1(gi) = inw2(gi) for all 0 ≤ i ≤ n.
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Here, we give weight −hi to the coefficient c0,i of xi in g0. Note that ∆ coincides with the

intersection of the n+ 1 complexes on Rn induced by the tropical hypersurfaces V (gνi ). By

[Stu94a, Theorem 4.1], we have

(in0
w(R))((c0,a)a∈A0 , (ac(di,a))i>0, a∈Ai

) = ±
∏
v

Rdv
v ,

where the product runs over all vertices v of ∆, and where

Rv = Rinv(g0),inv(g1),...inv(gn)

and the dv are positive integers that can be computed explicitly in terms of the supports of

the inv(gi).

The resultant Rv is a monomial if at least one of the inv(gi) is a monomial. Therefore,

the set of vertices v for which Rv is not a monomial is contained in the set S defined by

S =
⋂n

i=0 V (gνi ). For each v ∈ S the polynomials inv(gi) for 1 ≤ i ≤ n are binomials that

intersect in finitely many points, by Lemma 4.4.3, no matter how we vary their coefficients.

Therefore, Rv ̸= 0. Moreover, for h ̸= v ∈ S the initial form inv(g0) has support strictly

smaller than the support of g0. As Rv is a product of polynomials with the same support as

inv(g0), this implies that

multν−1
0 {1+

∑n
j=1 xj}(Rv) = 0.

Finally, according to [Stu94a, Theorem 4.1] we have dh = 1 because inh(g0) and g0 have

the same support and the support of g0 spans Zn.

Theorem 4.4.6. Let K be an algebraically closed valued field or a real closed valued

field with compatible valuation, with residue field κ. Let H = κ/κ2 (either K or S). Let

φ : κ → H denote the quotient morphism, and let φ : K → H ⋊R denote the composite

K
νac−→ κ ⋊ R

φ⋊R−−−→ H ⋊ R. Furthermore, let f1, . . . , fn ∈ (H ⋊ R)[x] be such that
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V (f ν
1 ), . . . , V (f ν

n) intersect transversally, and let h ∈ ((H ⋊R)∗)n. Then we have

Nφ
h (f1, . . . , fn) = mH(h; f1 · · · fn).

In fact, for every generic choice of gi ∈ φ−1{fi} for 1 ≤ i ≤ n we have

∣∣∣∣∣
n⋂

i=1

V (gi) ∩ φ−1{h}

∣∣∣∣∣ = mH(h; f1 · · · fn).

Remark 4.4.7. If K is algebraically closed, then H ⋊R = T and φ = ν, and if K is real

closed, then H ⋊R = TR and φ = νsgn.

Proof. For 1 ≤ i ≤ n let gi ∈ φ−1{fi}, let R = Rg1,...,gn , and let l = 1 +
∑n

i=1 hixi ∈

TR[x]. By Lemma 4.4.1, we have

∣∣∣∣∣
n⋂

i=1

V (gi) ∩ φ−1{h}

∣∣∣∣∣ = multKφ−1{l}(R).

By Proposition 4.3.11 in the algebraically closed case and Lemma 4.4.3 and Proposi-

tion 4.3.13 in the real closed case, we have

multKφ−1{l}(R) = multκφ−1{in−ν(h)(l)}(in−ν(h)(R)).

By Proposition 4.4.5, we have

multκφ−1{in−ν(h)(l)}(in−ν(h)(R))

= multκφ−1{in−ν(h)(l)}(Rinν(h)(g1),...,inν(h)(gn)),

which, again by Lemma 4.4.1, is equal to

∣∣∣∣∣
n⋂

i=1

V (inν(h)(gi)) ∩ φ−1{ac(h)}

∣∣∣∣∣ .
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By Proposition 4.3.11 in the algebraically closed case and Proposition 4.3.13 in the real

closed case, we have

∣∣∣∣∣
n⋂

i=1

V (inh(gi) ∩ φ−1{ac(h)}

∣∣∣∣∣ = mH(h; f ν
1 · · · f ν

n).

Using some model theory, we can apply our results about the numbers N νsgn
h (f1, . . . , fn)

for fi ∈ TR[x], to obtain the following result about the analogous numbers for fi ∈ S[x].

As further explained below after Definition 4.4.9, we reprove the main Corollary to [IR96,

Theorem 2].

Corollary 4.4.8. Let K be a real closed field and let f1, . . . , fn ∈ TR[x] such that the

tropical hypersurfaces V (f ν
i ) intersect transversally. Moreover, let h ∈ (S∗)n and denote

G = ac−1{h} ∩ ν−1

(
n⋂

i=1

V (f ν
i )

)
⊆ (TR∗)n.

Then we have

N sign
h (f ac

1 , . . . , f
ac
n ) ≥

∑
g∈G

mS(g; f1 · · · fn).

Proof. First, note that the inequality

N sign
h (f ac

1 , . . . , f
ac
n ) ≥

∑
g∈G

mS(g; f1 · · · fn)

can be formulated in the language of real closed fields. Since the theory of real closed

fields is complete (see e.g. [Mar02, Chapter 3.3]), we may assume that K is a valued real

closed field with surjective valuation. We pick, for 1 ≤ i ≤ n, a polynomial gi ∈ K[x] with
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g
νsgn
i = fi. Then we have

N sign
h (f ac

1 , . . . , f
ac
n ) ≥

∣∣∣∣∣
n⋂

i=1

V (gi) ∩ sign−1{h}

∣∣∣∣∣ =
=
∑
g∈G

∣∣∣∣∣
n⋂

i=1

V (gi) ∩ νsgn−1{g}

∣∣∣∣∣ =∑
g∈G

mS(g; f1 · · · fn),

where the last equality follows from Theorem 4.4.6.

Definition 4.4.9. Let f1, . . . , fn ∈ S[x], let h ∈ (S∗)n, and let F̃ be the sets of tuples

(f̃1, . . . , f̃n) of polynomials f̃i ∈ TR[x] with f̃ ac
i = fi and such that V (f̃ ν

1 ), . . . , V (f̃ ν
n)

intersect transversally. In analogy to the perturbation multiplicity, we define

ϵ-Nh(f1, . . . , fn) = max

 ∑
g∈G(h;f̃1,...,f̃n)

mS(g; f̃1 · · · f̃n) : (f̃i)i ∈ F̃

 ,

where

G(h; f̃1, . . . , f̃n) = ac−1{h} ∩ ν−1

(
n⋂

i=1

V (f̃ ν
i )

)
.

The statement of Corollary 4.4.8 can now be rephrased as

N sign
h (f1, . . . , fn) ≥ ϵ-Nh(f1, . . . , fn). (4.3)

If we identify fi ∈ S[x] with its signed Newton polytope and h with the orthant of

Rn it determines, then the number ϵ-Nh(f1, . . . , fn) is precisely what is denoted by

n((f1, . . . , fn),h) by Itenberg-Roy [IR96]. Corollary 4.4.8 follows from [IR96, Theo-

rem 2]. Based on the inequality (4.3) and the idea that the tropically transverse case is the

most degenerate and therefore that with the most real solutions, Itenberg and Roy conjec-

tured [loc. cit.] that there is equality in (4.3). This was later disproven by Li and Wang

with an explicit counterexample [LW98]. We will revisit that counterexample below in

Example 4.4.11.
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4.4.3 Resultants over hyperfields

As before, let f1, . . . , fn ∈ H[x], where fi =
∑

a∈Ai
di,ax

a, let h ∈ (H∗)n, and let

φ : K → H be a morphism from a field K to H . We wish to give an upper bound for

Nφ
h (f1, . . . , fn)

in terms of the multiplicities introduced in the previous section. Recall that Rf1,...,fn denotes

the set of polynomials in H[y] obtained by taking the sparse resultant of the supports of the

fi and the support of k = 1 +
∑
yixi, and plugging in the coefficients of the fi and k.

Theorem 4.4.10. Let l = 1 +
∑n

i=1 hixi. Then with the notation as above we have

Nφ
h (f1, . . . , fn) ≤ multφl (Rf1,...,fn).

In particular, we have Nφ
h (f1, . . . , fn) ≤ multl(Rf1,...,fn).

Proof. Given gi ∈ φ−1{fi} for 1 ≤ i ≤ n with
⋂n

i=1 V (gi) finite, we have

Rφ
g1,...,gn

∈ Rf1,...,fn .

By Lemma 4.4.1, it follows that

∣∣∣∣∣
n⋂

i=1

V (gi) ∩ φ−1{h}

∣∣∣∣∣ = multKφ−1{l}(Rg1,...,gn) ≤

≤ multKφ−1{l}(φ
−1{Rf1,...,fn}) = multφl (Rf1,...,fn).

In the remainder of this section, we analyze the utility of Theorem 4.4.10 in two explicit

examples. Our computations rely on the help of the Singular Computer Algebra System

[Sing].
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Example 4.4.11. Let a, b, r, s, t be positive reals and consider the polynomial system in two

variables given by 
f := 1 + ax− by = 0

g := 1 + rx3 − sy3 − tx3y3 = 0

Li and Wang showed that for appropriate choices of a, b, r, s, t the system has 3 positive

real solutions [LW98]. This served as a counterexample to the Itenberg-Roy conjecture that

predicted at most 2 real solutions. We now show that a resultant computation can predict the

correct bound. As before, we introduce an auxiliary linear form

l := 1 + ux+ vy

with parameters u, v, compute a multiple of the sparse resultant of l, f , and g and then

specialize to the sign hyperfield to obtain a set of signed polynomials in u and v. In this set

of signed polynomials, some but not all coefficients have a constant sign (up to multiplying

everything by −1). We use the following Singular code to compute the resultant.

system("random", 12341234);

ring R = (0,(u,v,a,b,r,s,t)),(x,y),dp;

ideal I = 1+ux+vy, 1+ax-by, 1+rx3-sy3-tx3y3;

module m = mpresmat(I,0);

det(m) / b9; // simplify by dividing by bˆ9
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This gives (abbreviating terms with multiple signs)

u6(· · · )+u5v(· · · )− 3u5ab3s+u4v2(· · · )− 9u4va2b2s+ 3u4a2b3s+u3v3(· · · )

+u3v2(· · · )+u3v(· · · )+u3(· · · )+u2v4(· · · )+u2v3(· · · )

+ u2v2(9a4bs+ 9ab4r + 9abt)+u2v(· · · ) + 3u2ab3t+uv5(· · · ) + 9uv4a2b2r

+uv3(· · · )+uv2(· · · )− 9uva2b2t− 3ua2b3t+v6(· · · ) + 3v5a3br + 3v4a3b2r

+v3(· · · ) + 3v2a3bt+ 3va3b2t+ a3b3t.

Specializing to the sign hyperfield, we obtain the set of signed polynomials in u and v

represented in Figure 4.10. The maximal boundary multiplicity of the polynomials in this

set is 3, the constaints coming from for the lower boundary. Since we know that this bound

can be achieved by [LW98], the boundary-multiplicity is equal to the multiplicity in this

case. ♢

∗
+ ∗
+ + ∗
∗ ∗ ∗ ∗
+ ∗ + ∗ ∗
+ − ∗ ∗ − ∗
+ − + ∗ + − ∗

Figure 4.10: A multiple of the signed sparse resultant of f , g and l. A ∗ means the sign is
undetermined.

Note that signed resultants are not always the best way to look at certain problems, as

the next example shows.

Example 4.4.12. We compute a multiple of the resultant of 1 + ux+ vy, 1 + ax+ by and

1 + tx+ rx2 − sy2 using the following code:

system("random", 12341234);

ring R = (0,(u,v,a,b,r,s,t)),(x,y),dp;
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ideal I = 1+ux+vy, 1+ax+by,1+rx2-sy2+tx;

module m = mpresmat(I,0);

det(m) / b; // simplify by dividing by b

The result is the polynomial in u and v given by

u2(b2 − s) + uv(−ab+ bt) + u(2as− b2t)+

+ v2(a2 − at+ r) + v(abt− 2br)− a2s+ b2r.

None of the signs of the coefficients are determined, so our bound is 2. But clearly a, b > 0

implies that the system cannot have any positive solutions. ♢
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APPENDIX A

FACTORIZATION RULES

Within Baker and Lorscheid’s paper [BL21a], the author’s previous paper [Gun22a], and a

paper of Agudelo and Lorscheid [AL21] are some descriptions of various division algorithms.

Agudelo and Lorscheid spell out these algorithms explicitly and in the other two the

algorithms are hidden inside the proofs. In this section, we describe these algorithms

and explain where and how they appear in each of the aforementioned papers.

Example A.0.1. Over the Krasner hyperfield, with m < n, we have the following factoriza-

tion:

xm + any intermediate terms + xn ≼ (x+ 1)(xm + xm+1 + xm+2 + · · ·+ xn−1).

Moreover, this factorization is optimal (the multiplicity of the quotient is exactly 1 less).

Therefore multK1 f = n − m for any polynomial with highest term xn and lowest term

xm. ♢

The existence of this rule was alluded to in [BL21a] but not spelled out. This rule is easy

to verify and this verification is left to the reader.

Example A.0.2. Let f =
∑
six

i be a polynomial over the sign hyperfield with no interme-

diate zeroes between the lowest and highest term. Let i0 be the smallest index for which

si = si+1. Define a new sequence of signs by “squishing together” si0 and si0+1, so

s̃i =


si if i ≤ i0,

si+1 if i > i0.

Then g =
∑
s̃ix

i is a quotient of f by (x + 1) and multS−1 g is exactly one less than
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multS−1 f .

For instance,

1− x+ x2 − x3 − x4 − x5 + x6 ≼ (1 + x)(1− x+ x2 − x3 − x4 + x5). ♢

Example A.0.3. If we apply the previous rule to factoring out (x − 1) by making the

substitution x 7→ −x before and after, we get this rule:

s̃i =


−si if i ≤ i0,

si+1 if i > i0

where i0 is now the smallest index where si ̸= si+1. From the previous example, if we

substitute x 7→ −x, the odd coefficients flip. Then, after “squishing” the parity changes so

we get a different sign before and after the squish.

For example,

1 + x+ x2 − x3 + x4 − x5 ≼ (−1 + x)(−1− x− x2 + x3 − x4). ♢

Examples A.0.2 and A.0.3 follow from a more general description which we will see

next.

Example A.0.4. Let f =
∑
six

i be a polynomial over the sign hyperfield, which for

simplicity we assume has a nonzero constant term (otherwise factor out a monomial). Then

as in Example A.0.3, let i0 be the smallest index i such that si ̸= si0 .

Then from left-to-right, define

s̃i = −si = −s0 for i ≤ i0

and for i > i0, let s̃i = sj(i) where j(i) = min{j : j > i and sj ̸= 0} (i.e. the next non-zero
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coefficient after si). Then g =
∑
s̃ix

i is a quotient of f by x− 1 and g has exactly one less

sign change—equivalently one less positive root. ♢

This rule first appeared in Baker and Lorscheid’s paper [BL21a, proof of Theorem C].

In the author’s previous paper, this rule is extended to the tropical real hyperfield [Gun22a,

proof of Theorem A]. In Agudelo and Lorscheid’s paper, the rule is adapted to apply to both

factoring out x− 1 and x+ 1.

In the context of this paper, the rule is obtained from the proof of Theorem 3.C in the

paragraphs before Claims 3 and 4 where we interpret i0, i0 +1 as the “middle.” For instance,

the function j(i) defined in the previous example is a sibling of the function j(i) defined

before Claim 4. For the left portion, the rule we gave was s̃i ≼ s̃i−1 − si which is certainly

true if we define s̃i = −s0 = −s1 = −s2 = · · · = −si0 for all i ≤ i0.

Example A.0.5. Let f be a polynomial over the tropical hyperfield and let a ∈ T× be a

root of f . Then to get a quotient of f by (x + a), first replace f by f(ax). Then apply

Example A.0.1 to factor the initial form in0 f . Then lift that factorization to a factorization

of f by using the staircase rules illustrated in Figure 3.4 and described in the proof of

Theorem 3.C.

Specifically, on the left, let di = min{di−1, ci} and on the right, let di = cj(i) where

j(i) = min{j : j > i and cj is minimal}. ♢

This rule is also described in [AL21] without first making the substitution f 7→ f(ax).

In [BL21a], an entirely different approach is given to tropical polynomials via looking at

polynomial functions.
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[AGS20] Xavier Allamigeon, Stéphane Gaubert, and Mateusz Skomra. “Tropical spec-
trahedra”. In: Discrete Comput. Geom. 63.3 (2020), pp. 507–548. DOI: 10.
1007/s00454-020-00176-1. arXiv: 1610.06746 [math.AG].

[Ami+15] Omid Amini et al. “Lifting harmonic morphisms I: metrized complexes and
Berkovich skeleta”. In: Research in the Mathematical Sciences 2.1 (June 2015),
p. 7. DOI: 10 . 1186 / s40687 - 014 - 0019 - 0. arXiv: 1303 . 4812
[math.AG].

[An+14] Yang An et al. “Canonical representatives for divisor classes on tropical curves
and the matrix-tree theorem”. In: Forum Math. Sigma 2 (2014), e24, 25. DOI:
10.1017/fms.2014.25. arXiv: 1304.4259 [math.CO].

[Bak08a] Matthew Baker. “An introduction to Berkovich analytic spaces and non-
Archimedean potential theory on curves”. In: p-adic geometry. Vol. 45. Univ.
Lecture Ser. Amer. Math. Soc., Providence, RI, 2008, pp. 123–174. DOI:
10.1090/ulect/045/04.

[Bak08b] Matthew Baker. “Specialization of linear systems from curves to graphs”.
In: Algebra Number Theory 2.6 (2008). With an appendix by Brian Conrad,
pp. 613–653. DOI: 10.2140/ant.2008.2.613. arXiv: math/0701075
[math.NT].

185

https://doi.org/10.1016/j.indag.2021.04.005
https://doi.org/10.1016/j.indag.2021.04.005
https://arxiv.org/abs/2005.12882
https://doi.org/10.1090/conm/616/12324
https://arxiv.org/abs/1309.6298
https://arxiv.org/abs/1309.6298
https://arxiv.org/abs/2207.06739
https://arxiv.org/abs/2301.05483
https://doi.org/10.2307/2302399
https://doi.org/10.1007/s00454-020-00176-1
https://doi.org/10.1007/s00454-020-00176-1
https://arxiv.org/abs/1610.06746
https://doi.org/10.1186/s40687-014-0019-0
https://arxiv.org/abs/1303.4812
https://arxiv.org/abs/1303.4812
https://doi.org/10.1017/fms.2014.25
https://arxiv.org/abs/1304.4259
https://doi.org/10.1090/ulect/045/04
https://doi.org/10.2140/ant.2008.2.613
https://arxiv.org/abs/math/0701075
https://arxiv.org/abs/math/0701075


[BB19] Matthew Baker and Nathan Bowler. “Matroids over partial hyperstructures”.
In: Adv. Math. 343 (2019), pp. 821–863. DOI: 10.1016/j.aim.2018.12.
004. arXiv: 1709.09707 [math.CO].

[BL21a] Matthew Baker and Oliver Lorscheid. “Descartes’ rule of signs, Newton poly-
gons, and polynomials over hyperfields”. In: Journal of Algebra 569 (2021),
pp. 416–441. DOI: https://doi.org/10.1016/j.jalgebra.2020.
10.024. arXiv: 1811.04966 [math.NT].

[BL21b] Matthew Baker and Oliver Lorscheid. “The moduli space of matroids”. In:
Advances in Mathematics 390 (2021), p. 107883. DOI: https://doi.org/
10.1016/j.aim.2021.107883. arXiv: 1809.03542 [math.AG].

[BPR13] Matthew Baker, Sam Payne, and Joseph Rabinoff. “On the structure of non-
Archimedean analytic curves”. In: Tropical and non-Archimedean geometry.
Vol. 605. Contemp. Math. Amer. Math. Soc., Providence, RI, 2013, pp. 93–121.
DOI: 10.1090/conm/605/12113. arXiv: 1404.0279 [math.AG].

[BPR16] Matthew Baker, Sam Payne, and Joseph Rabinoff. “Nonarchimedean geometry,
tropicalization, and metrics on curves”. In: Algebr. Geom. 3.1 (2016), pp. 63–
105. DOI: 10.14231/AG-2016-004. arXiv: 1104.0320 [math.AG].

[BR15] Matthew Baker and Joseph Rabinoff. “The skeleton of the Jacobian, the Ja-
cobian of the skeleton, and lifting meromorphic functions from tropical to
algebraic curves”. In: Int. Math. Res. Not. IMRN 2015.16 (2015), pp. 7436–
7472. DOI: 10.1093/imrn/rnu168. arXiv: 1308.3864 [math.AG].

[BZ23] Matthew Baker and Tianyi Zhang. “Fusion rules for pastures and tracts”. In:
European Journal of Combinatorics 108 (2023), p. 103628. DOI: https:
//doi.org/10.1016/j.ejc.2022.103628. arXiv: 2107.11700
[math.CO].

[Ber90] Vladimir G. Berkovich. Spectral theory and analytic geometry over non-
Archimedean fields. Vol. 33. Mathematical Surveys and Monographs. American
Mathematical Society, Providence, RI, 1990. ISBN: 0-8218-1534-2.

[BD17] Frédéric Bihan and Alicia Dickenstein. “Descartes’ rule of signs for polynomial
systems supported on circuits”. In: Int. Math. Res. Not. IMRN 22 (2017),
pp. 6867–6893. DOI: 10.1093/imrn/rnw199. arXiv: 1601.05826
[math.AG].

[BDF21] Frédéric Bihan, Alicia Dickenstein, and Jens Forsgård. “Optimal Descartes’
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